Programming Reference

HP 16500A
Logic Analysis System

ﬂﬁ HEWLETT

PACKARD

€ Copyright Hewlett-Packard Company 1988

Manual Part Number 16500-90908 Printed in U.S.A. September 1988

Product
Warranty

Limitation of Warranty

This Hewlett-Packard product has a warranty against defects in material
and workmanship for a period of three years from date of shipment.
During warranty period, Hewlett-Packard Company will, at its option,
cither repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service
facility designated by Hewlett-Packard. However, warranty service for
products installed by Hewlett-Packard and certain other products
designated by Hewlett-Packard will be performed at the Buyer’s facility at
no charge within the Hewlett-Packard service travel area, Outside
Hewlett-Packard service travel areas, warranty service will be performed
at the Buyer’s facility only upon Hewlett-Packard’s prior agreement and
the Buyer shall pay Hewlett-Packard’s round trip travel expenses.

For products returned to Hewlett-Packard for warranty service, the Buyer
shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard
shall pay shipping charges to return the product to the Buyer. However,
the Buyer shall pay all shipping charges, duties, and taxes for products
returned to Hewlett-Packard from another country.

Hewlett-Packard warrants that its software and firmware designated by
Hewlett-Packard for use with an instrument will execute its programming
instructions when properly installed on that instrument. Hewlett-Packard
does not warrant that the operation of the instrument software, or
firmware will be uninterrupted or error free.

The foregoing warranty shall not apply to defects resulting from improper
or inadequate maintenance by the Buyer, Buyer-supplied software or
mterfacing, unauthorized modification or misuse, operation outside of the
environmental specifications for the product, or improper site preparation
Or maintenance.,

NO OTHER WARRANTY 1S EXPRESSED QR IMPLIED.
HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Exclusive Remedies

Assistance

Certification

Safety

THE REMEDIES PROVIDED HEREIN ARE THE BUYER’S SOLE
AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER
BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL
THEORY.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your ncarest Hewlett-Packard Sales and
Service Office.

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the
United States National Bureau of Standards, to the extent allowed by the
Bureau’s calibration facility, and to the calibration facilities of other
International Standards Organization members.

This product has been designed and tested according to International
Safety Requirements. To ensure safe operation and to keep the product
safe, the information, cautions, and warnings in this manual must be
heeded.

Chapter 1:

Table of Contents
L

1-1
1.2
1-2
14
14
i-5
1-5
1-5
1-8
1-9
1-9
1-10
1-11
1-11
1-12
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-18
1-19
1-20
1-20
1-21
1-21

Introduction to Programming an Instrument
Introduction

Programming Syntax

Talking to the Instrument
Addressing the Instrument for HP-IB
Addressing the Instrument for RS-232C
Program Message Syntax

Separator

Command Syntax

Query Command

Program Header Options

Program Data

Program Message Terminator
Selecting Multiple Subsystems
Summary

Programming an Instrument

Initialization

Selecting an HP 16500A Moduie
Example Program

Program QOverview

Receiving Information from the Instrument
Response Header Options

Response Data Formats

Numeric Base

String Variables

Numeric Variables

Definite-Length Block Response Data
Multiple Queries

Instrument Status

Contents-1

Chapter 2: Programming Over HP-1B
2-1 Introduction
2-1 Interface Capabilities
2-1 Command and Data Concepts
2-2 Addressing
2-3 Communicating Over the HP-IB Bus
(HP 9000 Series 200/300 Controller)
2-4 Local, Remote, and Local Lockout
2-5 Bus Commands
2-5 Device Clear
2-5 Group Execute Trigger (GET)
2-5 Interface Clear (IFC)
.
Chapter 3: Programming Over RS-232C
3-1 Introduction
32 Interface Operation
3-2 C(Cables
3-3 Minimum Three-Wire Interface with Software Protocol
34 Extended Interface with Hardware Handshake
35 Cable Example
3-6 Configuring the Interface
3-6 Interface Capabilities
36 Protocol
37 Data Bits
3-8 Communicating Over the RS-232C Bus

Contents-2

3.9

(HP 9000 Series 200/300 Controller)

Lockout Command

Chapter 4:

Chapter 5:

4-1
4-1
4-2
4.2
4-4
4-4
4-6
4-6
4-6
4-7
4-8
4.8
4-8
49
4.9
4-9
4-11

Programming and Documentation Conventions
Introduction
Truncation Rule
The Command Tree
Command Types
Tree Traversal Rules
Examples
Infinity Representation
Sequential and Overlapped Commands
Response Generation
Notation Conventions and Definitions
Syntax Diagrams
Command Structure
Common Commands
Mainframe Commands
Subsystem Commands
Program Examples
Command Set Organization

541
5-4
5-5
57

5-10
5-12
5-13
5-14
5-16
5-17
5-19
5-21
5-22
5-24

Common Commands
Introduction
*CLS

*ESR

*IDN

*IST

*QPC
*OPT
*PRE

*RST

*SRE

*STB

*TRG

*TST

*WAI

Contents-3

Chapter 6: Mainframe Commands
6-1 Introduction
6-3 BEEPer
6-4 CAPabiiity
6-5 CARDcage
6-7 CESE
6-9 CESR
6-11 EQI
6-12 LER
6-13 LOCKout
6-14 MENU
6-16 MESE
6-18 MESR
6-20 RMODe
6-21 SELect
6-23 SETColor
6-25 STARt
6-26 STOP
|
Chapter 7: SYSTem Subsystem
7-1 Introduction
7-3 DATA
7-3 Definition of Block Data
7-6 DSP
7-7 ERRor
7-9 HEADer
7-10 LONGform
7-11 PRINt
7-13 SETup
7-13 Definition of Block Data

Contents-4

Chapter 8: MMEMory Subsystem
81 Introduction
8-4 AUToload
85 CATalog
87 COPY
8-9 DOWNIload
8-11 INITialize
812 LOAD
813 LOAD
8-14 MSI
815 PACK
816 PURGe
8-17 REName
818 STORe
819 UPLoad
]
Chapter 9: INTermodule Subsystem
9.1 Introduction
9.3 DELete
9-4 HTIMe
9-5 INPort
9-6 INSert
9-7 SKEW
9-8 TREE
9-10 TTIMe

Contents-5

Appendix A: Message Communication and System Functions
A-1 Introduction
A-2 Protocols

A-2 Functional Elements
A-3 Protocol Overview
A3 Protocol Operation
A4 Protocol Exceptions

A-5 Syntax Diagrams

A-6 Syntax Overview

A-8 Device Listening Syntax
A-21 Device Talking Syntax
A-27 Common Commands

|
Appendix B: Status Reporting
B-1 Introduction
B-3 Event Status Register
B-3 Service Request Enable Register
B-3 Bit Definitions
B-4 Key Features
B-6 Serial Poll

B-6 Using Serial Poll (HP-IB)

B-8 Parallel Poll

B-10 Polling HP-IB Devices

B-10 Configuring Parallel Poll Responses
B-11 Conducting a Parallel Poli

B-11 Disabling Parallel Poll Responses
B-12 HP-IB Commands

Contents-6

Error Messages
Device Dependent Errors
Command Errors
Execution Errors
Internal Errors
Query Errors

Appendix C:
C-1
C-2
C-3
C-4
C-5
I
Index

Contents-7

Introduction to Programming 1
an Instrument

Introduction

This chapter introduces you to the basic concepts of bus communication
and provides information and examples to get you started programming,
The exact mnemonics for the commands are listed in chapters 5 through 9
of this manual and in the individual programming manuals for each
module. There are three basic operations that can be done with a
controlier and this instrument via the bus. You can:

1. Set up the instrument and start measurements
2. Retrieve setup information and measurement results
3. Send measurement data to the instrument

Other more complicated tasks are accomplished with a combination of
these basic functions.

Chapter 1 deals mainty with how to set up the instrument, how to retrieve
setup information and measurement results, and how to pass data to the
controller. This chapter is divided into two sections. The first section
(page 1-2) concentrates on program syntax, and the second section (page
1-12) discusses programming an instrument,

Note

The programming examples in this manual are written in
HP Basic 4.0 using an HP 9000 Series 200/300 Controller over
HP-IB and RS-232C.

Introduction to Programming an Instrument
1-1

Programming
Syntax

Talking to the In general, computers acting as controllers communicate with the
instrument instrument by passing messages over a remote interface using the IO

statements provided in the instruction set of the controller’s host
language. Hence, the HPDIAL messages for programming the HP
16500A, described in this manual, will normally appear as ASCII
character strings imbedded inside the I/O statements of your controller’s
program. For example, the HP 9000 Series 200/300 BASIC and PASCAL
language systems use the OUTPUT statement for sending program
messages to the HP 16500A, and the ENTER statement for receiving
response messages from the HP 16500A.

Messages are placed on the bus using an output command and passing the
device address, program message, and terminator. Passing the device
address ensures that the program message is sent to the correct interface
and instrument.

The following command turns the command headers on:

OUTPUT < device address > ;" SYSTEM:HEADER ON" <terminator >

< device address > represents the address of the device being
programmed.

Introduction to Programming an Instrument

1-2

Note

The actual OUTPUT command you use when programming is
dependent on the controller you are using, the programming
language you are using, and which interface you are
programming over (HP-IB or RS-232C).

Angular brackets "< >,"in this manual, enclose words or
characters that symbolize a program code parameter or a bus
command.

Information that is displayed in quotes represents the actual
message that is sent across the bus. The message terminator
(NL or EOI) is the only additional information that is also sent
across the bus.

For HP 9000 Series 200/300 controllers, it is not necessary to type
in the actual <terminator> at the end of the program message.
These controllers automatically terrninate the program message
internally when the retumn key is pressed.

Intreduction to Programming an Instrument
1-3

Addressing the
tnstrument for HP-IB

Addressing the
Instrument for
RS-232C

Since HP-IB can address multiple devices through the same interface
card, the device address passed with the program message must include
not only the correct interface code, but also the correct instrument
address.

Interface Select Code (Selects Interface). Each interface card has a
unique interface select code. This code is used by the controiler to direct
commands and communications to the proper interface. The default is
typically "7" for HP-IB controllers.

Instrument Address (Selects Instrument). Each instrument on an HP-IB
bus must have a unique instrument address between decimal ¢ and 30.
The device address passed with the program message must include not
only the correct instrument address, but also the correct interface select
code.

DEVICE ADDRESS = (Interface Select Code X 100) + (Instrument Address)

For example, if the instrument address for the HP 16500A is 4 and the
interface select code is 7, when the program message is passed, the
routine performs its function on the instrument at device address 704.

For the HP 16500A, the instrument address is typically set to "7" at the
factory. This address can be changed in the HP-IB pop-up menu of the
System Configuration menu.

Since RS-232C can only be connected between two devices through the
same interface card, only the correct interface code is required for the
device address.

Interface Select Code (Selects Interface). Each interface card has its own
interface select code. This address is used by the controller to direct
commands and communications to the proper interface. Generally, the
interface select code can be any decimal value between 0 and 31. This
value can be selected through switches on the RS-232C interface card in
the controller.

For example, if the interface select code s 20, the device address required
to communicate over the bus is 20.

Introduction to Programming an Instrument

14

Program Message
Syntax

Separator

Command Syntax

To program the instrument over the bus, you must have an understanding
of the command format and structure expected by the instrument. The
instrument is remotely programmed with program messages. These are
composed of sequences of program message units, with each unit
representing a program command or query. A program command or
query is composed of a sequence of functional elements that include
separators, headers, program data, and terminators. These are sent to the
instrument over the system interface as a sequence of ASCII data
messages. For example:

PROGRAM MESSAGE UNIT

OUTPUT XXX, SYSTEM:HEADER ON"

OUTPUT COMMAND
DEVICE ADDRESS [

(OPTIONAL FOR HP 1€5@0a)
PROGRAM MNEMONICS
BEPARATOR
DATA

TE58B/BLI1E

The < scparator > shown in the program message refers to a blank space
which is required to separate the program mnemonic from the program
data.

A command is composed of a header, any associated data, and a
terminator. The header is the mnemonic or mnemonics that represent the
operation to be performed by the instrument. The different types of
headers are discussed in the following paragraphs.

Simple Command Header. Simple command headers contain a single
mnemonic. START and STOP are examples of simple command headers
typically used in this instrument. The syntax is:

< program mnemeonic > < terminator >

Introduction to Programming an Instrument
1-5

When program data must be included with the simple command header
(for example, :SELECT 1), a separator is added. The syntax is:

< program mnemonic > < separator > < program data > <terminator >

Compound Command Header. Compound command headers are a
combination of two or more program mnemonics. The first mnemonic
selects the subsystem, and the last mnemonic selects the function within
that subsystem. Additional mnemonics appear between the subsystem
mnemonic and the function mnemonic when there are additional levels
within the subsystem that must be transversed. The mnemonics within the
compound message arc scparated by colons. For example:

To execute a single function within a subsystem, use the following:
: < subsystem > : < function > < separator > <program data > <terminator >
(For exampie :SYSTEM:LONGFORM ON)

To transverse down a level of a subsystem to execute a subsystem within
that subsystem:

< subsystem > : < subsystem > : <function > < separator > < program
data > < terminator>

(For example :MMEMORY:LOAD:CONFIG "FILE_ ")

To execute more than one function within the same subsystem a
semi-colon is used to separate the functions:

: < subsystem > : < function > <separator> <data >; < function > < separator > < data >
<terminator >

(For example :SYSTEM:LONGFORM ON;HEADER ON)

Introduction 1o Programming an Instrument

16

Identical function mnemonics can be used for more than one subsystem.
For example, in the oscilloscope module the function mremonic RANGE
may be used to change the vertical range or to change the horizontal range:

:CHANNEL 1:RANGE .4
- sets the vertical range of channel 1to 0.4 volts full scale.

‘TIMEBASE:RANGE 1
- sets the horizontal timebase to 1 second full scale.

CHANNEL]1 and TIMEBASE are subsystem selectors and determine
which range is being modified.

Common Command Header. Common command headers control IEEE
488.2 functions within the instrument (such as clear status, etc.). Their
syntax s:

* < command header> <terminator:>

No space or separator is allowed between the asterisk and the command
header. *CLS is an example of a common command header.

Introduction to Programming an Instrument
1-7

Query Command Command headers immediately followed by a question mark (?) are
queries. After receiving a query, the instrument interrogates the
requested function and places the answer in its output queue. The output
message remains in the queue until it is read or another command is
issued. When read, the message is transmitted across the bus to the
designated listener (typically a controller). The logic analyzer query
:MACHINELTWAVEFORM:RANGE? places the current seconds per
division full scale range for machine 1 in the output queue. The controller
input statement:

ENTER < device address > ;Range

passcs the value across the bus to the controller and places it in the
variable Range.

Query commands are used to find out how the instrument is curreatly
configured. They are also used to get results of measurements made by
the instrument, with the query actually activating the measurement, Fer
example, the oscilloscope command :MEASURE:RISETIME? instructs
the instrument to measure the risetime of your waveform and place the
result in the output quene.

Note

The output queue must be read before the next program message
is sent. For example, when you send the oscilloscope query
MEASURE:RISETIME? you must follow that query with the
program statement ENTER Value_risetime to read the result of
the query and place the result in a varigble (Value_risetime).

Sending another command before reading the result of the query
will cause the owtput buffer to be cleared and the current
response to be lost. This will also generate an error in the error

queue.

Introduction to Programming an Instrument
1-8

Program Header
Options

Program Data

Program headers can be sent using any combination of uppercase or
lowercase ASCII characters. Instrument responses, however, are always
returned in uppercase.

Both program command and query headers may be sent in either
longform {complete spelling), shortform (abbreviated spelling), or any
combination of longform and shortform. Either of the following examples
turn the headers and longform on.

:SYSTEM:HEADER ON;LONGFORM ON - longform
:SYST:HEAD ON;LONG ON - shortform

Programs written in longform are easily read and are aimost
self-documenting. The shortform syntax conserves the amount of
controller memory needed for program storage and reduces the amount
of I/O activity.
Note
The rules for shortform syntax are shown in the chapter
"Programming and Documentation Conventions.”

Program data is used to convey a variety of types of parameter
information related to the command header. At least one space must
separate the command header or query header from the program data.

< program mnemonic > < separatof > < gata > < terminator >

When a program mnemonic or query has multiple data parameters a
comma separates sequential program data.

< program mnermonic > <separator > < data >, <data> <terminator>

For example, :!MENU 0,2 has two data parameters: 0 and 2.

Introduction to Pregramming an Instrument
1-9

Character Program Data. Character program data is used to convey
parameter information as short alpha or alphanumeric strings. For
example, the run mode command RMODE can be set to single or
repetitive. The character program data in this case may be SINGLE or
REPETITIVE. :RMODE SINGLE sets the run mode to single,

Numeric Program Data. Some command headers require program data
to be a number. For example, :MENU requires the desired menu
selection to be expressed numerically. The instrument recognizes
integers, real numbers, and scientific notation. With the proper prefix, the
instrument will also recognize binary, octal, and hexadecimal base
numbers. If no prefix is added, the default is decimal.

Tabie 1-1. Numeric Data Prefixes

Base Prefix Example
Binary #B #B10101010
Octal #Q #Q1234567
Hexadecimal #H #H2468ABC
Decimal (none) 1234567

Program Message The program codes within a data message are executed after the program
Terminator message terminator is received. The terminator may be either an NL

(New Line) character, an EQI (End-Or-Identify) asserted, or a
combtnation of the two. All three ways are equivalent with the exact
encodings for the program terminators listed in the appendix "Message
Communication and System Functions.” Asserting the EQJ sets the EOI
control ine low on the last byte of the data message. The NL character is
an ASCII linefeed (decimal 10).

Note

The NL (New Line) terminator has the same function as an
EOS (End Of String) and EOT (End Of Text) terminator.

The EQI terminator only applies to HP-IB.

Introduction to Programming an Instrument
1-10

Selecting Multiple You can send multiple program commands and program queries for
Subsystems different subsystems on the same line by separating cach command with a
semicolon. The colon following the semicoion enables you to enter a new
subsystem. For example:

< pregram mnemeonic > <data > ;: < program mnemonic > <data > < terminator>

:MMEMORY:CATALOG?;:SYSTEM:PRINT ALL

Note

Multiple commands may be any combination of compound and
simple commands.

Summary The following illustration summarizes the syntax for programming over
the bus.

PROGRAM MESSAGE UNIT
L

QUTPUT XXX:'" 'SYSTEM:HEADER ON"

f
|
|

CUTPUT COMMAND
DEVICE ADDRESS
(OPTIONAL FOR HF 1650BA)
PROGRAM MNEMONICS
SEPARATOR
DATA

16508 /BL 1€

Intreduction to Programming an Instrument
1-11

Programming
an Instrument

Initialization To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. For example:

CLEAR XXX ! initializes the interface of the instrument.

Then load a predefined configuration file from the disc to preset the
instrument to a known state. For example:

OUTPUT XXX;"MMEMORY:LOAD:CONFIG 'DEFAULT__ ™

would load the configuration file "DEFAULT__" into all of the modules
and mainframe. Refer to the chapter "Mmemory Subsystem” for more
information on the LOAD command.

Note

The three Xs (XXX) after the "CLEAR" and "OUTPUT"
statements in the previous examples refer to the device address
required for programming over either HP-IB or R§-232C. The
commands and syntax for initializing the instrument are
discussed in the chapter "Common Commands."

Refer to your controller manual and programming language
reference manual for information on initializing the interface.

Introduction 1o Programming an Instrument
1-12

Selecting an
HP 16500A Module

Before you can program an HP 16500A moduie over the bus, you must
first select the appropriate module. To select the module, use the
mainframe command :SELECT followed by the numeric reference for the
slot location of the master card for that module (1...5 refers to slot A..E
respectively). :SELECT 1 selects the module in slot A, :SELECT 2
selects the module in slot B, etc. For example, if the TIMEBASE card for
your oscilloscope module is in slot B, then the command:

:SELECT 2

would select the oscilloscope module. Figure 1-1 shows the command
tree for the select command. For more information on the select
command, refer to the chapter "Mainframe Commands."

(SELECT
Q (SELECTS SYSTEM/INTERMODULE }
F—— 1——— (SELECTS MODULE IN SLOT A
;——2 (SCLECTS MODULE IN SLCT B
|
;r——3 (SELECTS MODULE IN SLOT C)
| 4 (SELECTS MODULE IN SLOT D)
5 (SELECTS MODULE IN SLOT E!
—— i —— (SELECTS OPTION 13
Sermem =2 —— (SELECTS OPTION 23

16508 /6, 17
Figure 1-1. Select Command Tree

Note

Commands rmay be sent over the bus for any module while in
any menu as long as the appropriate module has been selected.

Introduction to Programming an Instrument
1-13

Example Program This program demonstrates the basic command structure used to program
a module of the HP 16500A.

10 CLEAR 00X linitialize instrument interface
20 QUTPUT XX SYSTEM:HEADER ON" ITurn headers on
30 CUTPUT XXX;*:SYSTEM:LONGFORM ON" Turn iongform on

40 DIM Card$[100] 'Reserve memory for string variable
50 OUTPUT XX CARDCAGE? IVerity which modules are loaded
60 ENTER XXX, Card$!Enter result in a string variable

70 PRINT Card$ 1Print resuit of query

80 QUTPUT 200G MMEM:LOAD:CONFIG 'TEST_E'5" !Load configuration file
finto module in slot E

80 OUTPUT XO0(* SELECT 5 |Select module in siot E
100 OUTPUT o0 MENU 5,3 ISeiect menu for module in slot E
110 OUTPUT X304 RMODE SINGLE" 18Select run mode
120 OUTPUT X00(*: START" IRun the measurement
Note

The three Xs (XXX) after the "OUTPUT and "ENTER"
statements in the previous examples refer to the device address
required for programming over either HP-IB or RS-232C.

Introduction to Programming an Instrument
1-14

Program Overview Line 10 initializes the instrument interface to a known state, and lines 20
and 30 turn the headers and longform on.

Line 50 queries the cardcage to confirm which modules are loaded in this
mainframe. Then line 70 prints the result of the query on screen. In this
example the query returns:

:CARDCAGE -1,-1,12,11,31,0,0.4,4,5

The first five numbers returned are the card identification numbers. The
last five numbers list the module assignment for each card. In this
example, the response shows that there is an oscilloscope acquisition card
in slot C which is assigned to the oscilloscope timebase card in slot D.
Also, there is a logic analyzer card ir slot E which is assigned to itself.
Refer to the chapter "Mainframe Commands” for more information on
CARDCAGE command.

Line 80 loads the configuration file "TEST_E" into the module in slot E
and line 90 selects the module in slot E. Then line 100 displays one of
menus of the module in slot E.

Lines 110 and 120 tell the analyzer to run the measurement configured by
the file "TEST_E" one time.

Introduction to Programming an Instrument
1-15

Receiving Information After receiving a query (command header followed by a question mark),

from the Instrument the instrument interrogates the requested function and places the answer

in its output queue. The answer remains in the output queue until it is
read or another command is issued. When read, the message is
transmitted across the bus to the designated listener (typically a
controller). The input statement for receiving a response message from
an instrument’s output queue typically has two parameters;the device
address and a format specification for handling the response message.
For example, to read the result of the query command
:SYSTEM:LONGFORM? you wouid execute the statement:

ENTER <device address > ;Setting

where < device address > represents the address of your device. This
would enter the current setting for the longform command in the numeric
variable Setting.

Note

All results for queries sent in a program message must be read
before another program message is sent. For example, when you
send the query :SELECT?, you must follow that query with the
program statement ENTER Setting to read the result of the guery
and place the result in a variable (Setting).

Sending another command before reading the result of the query
will cause the output buffer to be cleared and the current
response to be lost. This will also cause an error to be placed in
the error queue.

The actual ENTER program statement you use when
programming is dependent on the programming language you are
using.

The format specification for handling the response messages is dependent
on both the controller and the programming language.

Introduction te Programming an Instrument

1-16

Response Header
Options

The format of the returned ASCII string depends on the current settings
of the SYSTEM HEADER and LONGFORM commands. The general
format is:

<header > < separator > < data > <terminator >

The header identifies the data that follows and is controlled by issning a
:SYSTEM:HEADER ON/OFF command. If the state of the header
command is OFF, oaly the data is returned by the query. The format of
the header is controlled by the :SYSTEM:LONGFORM ON/OFF
command. If longform is OFF , the header will be in its shortform and the
header will vary in length depending on the particular query. The
following wonld be returned from a :SELECT? command query:

<data > < terminator > (with HEADER OFF)
:SEL <separator > < data> <terminator> (with HEADER ON/LONGFORM OFF)
:SELECT < separator > <data> <terminator> (with HEADER ON/LONGFORM ON)

Note

A command or query may be sent in either longform or
shortform, orin any combination of longform and shortform.
The HEADER and L ONGFORM commands only control the
format of the returned data and have no effect on the way
commands are sent. Common commands never retumn a header.

Refer to the chapter "System Subsystem" for information on
turning the HEADER and LONGFORM commands on and off.

Introduction to Programming an Instrument
1-17

Response Data Most data will be returned as exponential or integer numbers. However,
Formats query data of instrument setups may be returned as character data.

Numeric Base

Interrogating the run mode :RMODE? will return one of the following:

:RMODE REPETITIVE < terminator > (with HEADER ON/LONGFORM ON})
:RMOD REP < terminator > (with HEADER ON/LONGFORM OFF)
REPETITIVE < terminator> (with HEADER OFF/LONGFORM ON)

REP <terminator > {with HEADER OFF/LONGFORM CFF}

Note

Refer to the individual commands in this manual and in the
individual programming manuals for each moduie for
information on the format (alpha or numeric} of the data
retumed from each query.

Most numeric data will be returned in the same base as shown on screen.
When the prefix #B precedes the returned data, the value is in the binary
base. Likewise, #0Q is the octal base and #H is the hexadecimal base. If
no prefix precedes the returned numeric data, then the value is in the
decimal base.

Introduction to Programming an Instrument

1-18

String Variables If you want to observe the headers for queries, you must bring the
returned data into a string variable. Reading queries into string variables
is simple and straightforward, requiring little attention to formatting. For
example:

ENTER <device address > ;Result$

places the output of the query in the string variable Result$.

Note

String variables are case sensitive and must be expressed exactly
the same each time they are used.

The output of the instrument may be numeric or character data
depending on what is queried. Refer to the specific commands for the
formats and types of data returned from queries.

Note

For the example programs, the device being programmed is at
device address XXX. The actual address will vary according to
how you have configured the bus for your own application and
whether you are programming over HP-IB or RS-232C.

The following example shows logic analyzer data being returned to a
string variable with headers off:

10 OUTPUT XXX;*:SYSTEM: HEADER OFF"
20 DIM Rang${30]

30 OUTPUT XXX;":MACHINE 1: TWAVEFORM: RANGE?"
40 ENTER XXX:Rang$

50 PRINT Rang$

60 END

After running this program, the controller displays:

+ 1.00000E-05

Introduction to Programming an Instrument
1-19

Numeric Variables

Definite-Length Block

Response Data

If you do not need to sec the headers when a numeric value is returned
from the instrument, then you can use a numeric variable. When you are
receiving numeric data into a numeric variable, turn the headers off.
Otherwise the headers may cause misinterpretation of returned data.

The following example shows logic analyzer data being returned to a
numeric variabie.

10 QUTPUT XXX ": 8YSTEM:HEADER OFF"

20 OUTPUT X004 MACHINE 1: TWAVEFORM:RANGE?"
30 ENTER XXX:Rang

40 PRINT Rang

50 END

After running this program, the controller displays:
1.E-5

Definite-length block response data allows any type of device-dependent
data to be transmitted over the system interface as a serics of 8-bit binary
data bytes. This is particularly useful for sending large quantities of data
or 8-bit extended ASCII codes. The syntax is a pound sign (#) followed
by a non-zero digit representing the number of digits in the decimal
integer. After the non-zero digit is the decimal integer that states the
number of 8-bit data bytes being sent. This is followed by the actual data.

For example, for transmitting 80 bytes of data, the syntax would be:

NUMBER OF DIGITS
THAT FOLLOW

ACTUAL DATA

/‘\-/\——f\

#50800pA8B<eighty Tytes of dota><terminator>
e ¥

NUMBER OF BYTES
TC BE TRANSMITTED 1650048122

The "8" states the number of digits that follow, and "00000080" states the
number of bytes to be transmitted.

Note
Indefinite-length block data is not supported on the HP16500A4.

Introduction to Programming an Instrument

1-20

Multiple Queries

Instrument Status

You can send multiple queries to the instrument within a single program
message, but you must also read them back within a single program
message. This can be accomplished by either reading them back into a
string variable or into multiple numeric variables. For example, you could
read the result of the query :SYSTEM:HEADER?;LONGFORM? into
the string variable Results$ with the command:

ENTER XXX;Results$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon. For example, the response of the
query :SYSTEM:HEADER?:LONGFORM? with HEADER and
LONGFORM on would be:

:SYSTEM:HEADER 1;:SYSTEM:LONGFORM 1

If you do not need to see the headers when the numeric values are
returned, then you could use following program message to read the query
SYSTEM:HEADERS?;LONGFORM? into multiple numeric variabies:

ENTER X0XX;Result1,Resutt2

Note

When you are receiving numeric data into numeric varigbles, the
headers should be tumed off. Otherwise the headers may cause
misinterpretation of retumed data.

Status registers track the current status of the instrument. By checking the
instrument status, you can find out whether an operation has been
completed, whether the instrument is receiving triggers, and more. The
appendix "Status Reporting” explains how to check the status of the
instrument.

Introduction to Programming an Instrument
1-21

Programming Over HP-IB 2

L

Introduction This section describes the interface functions and some general concepts
of the HP-IB. In general, these functions are defined by IEEE 488.1
(HP-IB bus standard). They deal with general bus management issues, as
well as messages which can be sent over the bus as bus commands.

|

Interface The interface capabilities of the HP 16500A, as defined by IEEE 488.1 are

Capabilities SHI, AH1, T5, TEG, L3, LEG, SR1, RL1, PP1, DC1, DT1, C0, and E2,

ap For more information, refer to table 6-1 in the chapter "Mainframe

Commands."

L

Command and
Data Concepts

The HP-IB has two modes of operation: command mode and data mode.
The bus is in command mode when the ATN line is true. The command
mode is used to send talk and listen addresses and various bus commands,
such as a group execute trigger (GET). The bus is in the data mode when
the ATN line is false. The data mode is used to convey device-dependent
messages across the bus. These device-dependent messages include all of
the instrument commands and responses found in chapters S through 9 of
this manual and in the individual programming manuals for each module.

Programming Over HP-IB
2-1

Addressing

Programming Over HP-1B
22

By using the front-panel touchscreen, the HP-IB interface can be placed
in either talk only mode (Printer) or addressed talk/listen mode
(Controller) (see the HP 165004 Reference Manual). Talk only mode
should be used when you want the instrument to talk directly to a printer
without the aid of a controller. Addressed talk/listen mode is used when
the instrument will operate in conjunction with a controller. When the
instrument is in the addressed taik/listen mode, the following is true:

¢ Each device on the HP-IB resides at a particular address ranging
from 010 30,

e The active controller specifies which devices will talk, and which will
listen.

¢ An instrument, thercfore, may be talk addressed, listen addressed, or
unaddressed by the controller.

If the controller addresses the instrument to talk, it will remain configured
to talk until it receives an interface clear message (IFC), another
instrument’s talk address (QTA), its own listen address (MLA), or a
universal untalk command (TUUNT).

1f the controller addresses the instrument to listen, it will remain
configured to kisten until it receives an interface clear message (IFC) its
own talk address (MTA), or a universal unlisten command (UNL).

Communicating
Over the HP-IB
Bus (HP 9000
Series 200/300
Controller)

Since HP-IB can address multipie devices through the same interface
card, the device address passed with the program message must include
not only the correct instrument address, but also the correct interface
code.

Interface Select Code (Selects Interface). Each interface card has its own
interface select code. This code is used by the controller to direct
commands and communications to the proper interface. The default is
typically "7" for HP-IB controllers.

Instrument Address (Selects Instrument). Each instrument on the
HP-IB port must have a unique instrument address between decimal 0
and 30. The device address passed with the program message must
include not only the correct instrument address, but also the correct
interface select code.

DEVICE ADDRESS = (Interface Select Code X 100) + (Instrument Address)

For example, if the instrument address for the HP 16500A is 4 and the
interface select code is 7, when the program message is passed, the
routine performs its function on the instrument at device address 704.

Programming Over HP-IB
2.3

Local, Remote,
and Local
Lockout

Programming Over HP-IB
24

The local, remote, and remote with local lockout modes may be used for
various degrees of front-panel control while a program is running. The
instrument will accept and execute bus commands while in local mode,
and the front panel will also be entirely active. If the HP 16500A is in
remote mode, the instrument will go from remote to local with any
touchscreen or mouse activity. In remote with local lockout mode, all
controls (except the power switch) are entirely locked out. Local control
can only be restored by the controller.

Note

Cycling the power will also restore local control, but this will also
reset certain HP-IB states.

The instrument is placed in remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to histen.
The instrument can be placed in local lockout mode by sending the local
lockout command (LLO). The instrument can be returned to local mode
by either setting the REN line false, or sending the instrument the go to
local command (GTL).

Bus Commands The following commands are IEEE 488.1 bus commands (ATN true).
- IEEE 488.2 defines many of the actions which ate taken when these
commands are received by an instrument.

Device Clear The device clear (DCL) or selected device clear (SDC) commands clear
the input and output buffers, reset the parser, clear any pending
commands, and clear the Request-OPC flag.

Group Execute The group execute trigger command will cause the same action as the
Trigger (GET) START command for Group Run: the instrument will acquire data for
the active waveform and listing display(s).

Interface Ciear (IFC) This command halts all bus activity. This includes unaddressing alf
listeners and the talker, disabling serial poll on all devices, and returning
control to the system controlier.

Programming Over HP-1B
2-§

Programming Over RS-232C 3

Introduction

This section describes the interface functions and some general concepts
of the RS-232C. The RS-232C interface on this instrument is
Hewlett-Packard’s implementation of EIA Recommended Standard
RS-232C, "Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data Interchange."
With this interface, data is sent one bit at a time and characters are not
synchronized with preceeding or subsequent data characters. Each
character is sent as a complete entity without relationship to other events.

Note

IEEE 488.2 is designed to work with IEEE 488.1 as the physical
interface. When RS-232C is used as the physical interface, as
much of IEEFE 488.2 is retained as the hardware differences will
aliow. No IEEE 488.1 messages such as DCL, GET, and END
are available.

Programming Over RS-232C
31

Interface
Operation

Cables

The HP 16500A can be programmed with a controller over RS-232C using
cither a minimum three-wire or extended hardwire interface. The
operation and exact connections for these interfaces are described in
more detail in the following sections. When you are programming an HP
16500A over RS-232C with a controller, you are normally operating
directly between two DTE (Data Terminal Equipment) devices as
compared to operating between a DTE device and a DCE (Data
Communications Equipment) device. When operating directly between
two RS-232C devices, certain considerations must be taken into account.
For three-wire operation, XON/XOFF must be used to handle protocol
between the devices. For extended hardwire operation, protocol may be
handled either with XON/XOFF or by manipulating the CTS and RTS
lines of the HP 16500A. For both three-wire and extended hardwire
operation, the DCD and DSR inputs to the HP 16500A must remain high
for proper operation. With extended hardwire operation, a high on the
CTS input allows the HP 16500A to send data and a low on this lin
disables the HP 16500A data transmission. Likewise, a high on the RTS
line allows the controller to send data and a low on this line signals a
request for the controller to disable data transmission. Since three-wire
operation has no control over the CTS input, internal puli-up resistors in
the HP 16500A assure that this line remains high for proper three-wire
operation.

Selecting a cable for the RS-232C interface is dependent on your specific
application. The following paragraphs describe which lines of the HP
16500A are used to control the operation of the RS-232C bus relative to
the HP 16500A. To locate the proper cable for your application, refer to
the reference manual for vour controller. This manual should address the
exact method your controller uses to operate over the RS-232C bus.

Programming Over RS-232C

32

Minimum
Three-Wire
Interface with
Software
Protocol

With a three-wire interface, the SOFTWARE (as compared to interface
hardware) controls the data flow between the HP 16500A and the
controller. This provides a much simpler connection between devices
since you can ignore hardware handshake requirements. The HP 16500A
uses the following connections on its RS-232C interface for three-wire
communication:

e Pin 7 SGND (Signal Ground)
e Pin2 TD (Transmit Data from HP 16500A)
e Pin3 RD (Reccive Data into HP 16500A)

The TD (Transmit Data) line from the HP 16500A must connect to the
RD (Receive Data) line or the controller. Likewise, the RD line from the
HP 16500A must connect to the TD line on the controller. Internal
pull-up resistors in the HP 16500A assure the DCD, DSR, and CTS lines
remain high when you are using a three-wire interface.

Note

The three-wire interface provides no hardware means to control
data flow between the controller and the HP 16500A.
XON/OFF protocol is the only means to control this data flow.

Programming Over RS-232C
33

Extended
interface with
Hardware
Handshake

With the extended interface , both the software and the hardware can
control the data flow between the HP 16500A and the controller. This
allows you to have more control of data flow between devices. The HP
16500A uses the following connections on its RS-232C interface for
extended interface communication:

e Pin 7 SGND (Signal Ground)
e Pin2 TD (Transmit Data from HP 16500A)
e Pin3 RD (Receive Data into HP 16500A)

The additional lines you use depends on your controller’s implementation
of the extended hardwire interface.

e Pin4 RTS (Request To Send) is an output from the
HP 16500A which can be used to control incoming data flow.

e Pin5 CTS (Clear To Send) is an input to the HP 16500A which
controls data flow from the HP 16500A.

e Pin6 DSR (Data Set Ready) is an input to the HP 16500A which
controls data flow from the HP 16500A within two bytes.

e Pin8 DCD (Data Carrier Detect) is an input to the
HP 16500A which controls data flow from the HP 16500A within two
bytes.

e Pin20 DTR (Data Terminal Ready) is an output from the
HP 16500A which is enabled as long as the HP 16500A is turned on.

The TD (Transmit Data) line from the HP 16500A must connect to the
RD (Receive Data) line on the controller. Likewise, the RD line from the
HP 16500A must connect to the TD line on the controlier.

Programming Over RS-232C

34

Cable Exampie

The RTS (Request To Send), is an output from the HP 16500A which can
be used to control incoming data flow. A high on the RTS line aliows the
controlier to send data and a low on this line signals a request for the
controller to disable data transmission.

The CTS (Clear To Send), DSR (Data Se¢t Ready), and DCD (Data
Carrier Detect) lines are inputs to the HP 16500A which control data flow
from the HP 16500A (Pin 2). Internal pull-up resistors in the HP 16500A
assure the DCD and DSR lines remain high when they are not connected.
If DCD or DSR are connected to the controller, the controller must keep
these lines and the CTS line high to enable the HP 16500A to send data to
the controller. A low on any one of these lines will disable the HP 16500A
data transmission. Dropping the CTS line low during data transmission
will stop HP 16500A data transmission immediately. Dropping cither the
DSR or DCD line low during data transmission will stop HP 16500A data
transmission, but as many as two additional bytes may be transmitted from
the HP 16500A.

Figure 3-1 is an example of how to connect the HP 16500A to the

HP 98628 Interface card of an HP 9000 series 200/300 controller. For
more information on cabling, refer to the reference manual for your
specific controller.

Note

Since this example does not have the correct connections for
hardware handshake, XON[XOFF protocol must be used when
connecting the HP 165004 as shown in figure 3-1

HF 165004
REAR PANEL
——————
' ; HP 98628
| | INTERFACE CARD
! | [—
— 1 | i]
! ——
|
|
T |
; |
13242N — 5061-4216
(MA_E-TT=MALE) 0CL OPT @ez

TFEMA E-TO=FEMALE 5
165Q8/BL15

Figure 3-1. Cable Example

Programming Over RS-232C
3-5

Configuring the

Interface

Interface

Capabilities

Protocol

By using the front-panel touchscreen, the RS-232C interface can be
placed in either the printer mode or the controlier mode. The printer
mode should be used when you want the instrument to talk directlyto a
printer over RS-232C without the aid of a controller. The controller mode
is used when the instrument will operate in conjunction with a controller
over RS-232C.

If you are not familiar with how to configure the RS-232C interface, refer
to the HP 16500A Reference Manual.

The baud rate, stop bits, parity, protocol, and data bits must be configured
exactly the same for both the controller and the HP 16500A to properly
communicate over the R$-232C bus. The HP 16500A RS-232C interface
capabilities are listed below:

Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2 k
Stop Bits: 1, 1.5,0r 2

Parity: None, Odd, or Even

Protocol: None or XON/XOFF

Data Bits: 7or 8

NONE. With a three-wire interface, selecting NONE for the protocol
does not allow the sending or receiving device to control data flow. No
control over the data flow increases the possibility of missing data or
transferring incompiete data.

With an extended hardwire interface, selecting NONE allows a hardware
handshake to occur. With hardware handshake, hardware signals control
data flow.

Programming Over RS-232C

3-6

Data Bits

XON/XOFF. XON/XOFF stands for Trarsmit On/Transmit Off. With
this mode the receiver (controlicr or HP 16500A) controls data fiow and
can request that the sender (HP 16500A or controller) stop data flow. By
sending XOFF (ASCTI 17) over its transmit data line, the receiver '
requests that the sender disables data transmission. A subsequent XON
(ASCII 19) allows the sending device to resume data transmission.

A controller sending data to the HP 16500A should send no more than 32
bytes of data after an XOFF.

The HP 16500A will not send any data after an XOFF is received until an
XON is received.

Data bits are the number of bits sent and received per character that
represent the binary code of that character. They consist of either 7 or 8
bits, depending on the application.

8 Bit Mode. Information is usually stored in bytes (8 bits at a time). With

8-bit mode, you can send and receive data just as it is stored, without the
need to convert the data.

7 Bit Mode. In 7-bit mode, each byte of data is converted into two
separate 7-bit units. The first unit represents the ASCII equivalent of the
four most significant bits of the byte and the second unit represents the
ASCII equivalent of the four least significant bits of the byte. For
example, to send the data

FE, A0, B1

over the bus 1n 7-bit mode, the instrument would send the ASCII
equivalent of:

’P,,E,,’A,,’O,,’B,,,l,
or

46,45,41,30,42,31 (hexadecimal).

Programming Over R8-232C
37

Then the receiver would need to convert this 7-bit data back into their
8-bit equivalents.

Note

The controller and the HP 165004 must be in the same bit mode
{o properly communicate over the RS-232C. This means that
both the controller and the HP 165004 must have the capability
to send and receive 7 bit data, including the ability to convert and
reassembie 7 bit data.

For more information on the RS-232C interface, refer to the HP 16500A
Reference Manual. For information on RS-232C voltage levels and
connector pinouts, refer to the HP 16500A Service Manual.

Communicating Each RS-232C interface card has its own interface select code. This code

Over the is used by the controller to direct commands and communications to the
proper interface. Unlike HP-IB, which allows multiple devices to be

RS-232C Bus connected through a single interface card, RS-232C is only connected

(H P 9000 between two devices at a time through the same interface card. Because

Series 200/300 of this, only the interface code is required for the device address.

Controller)

Generally, the interface select code can be any decimal value between 0
and 31, except for those interface codes which are reserved by the
controller for internal peripherals and other internal interfaces. This
value can be selected through switches on the interface card. For more
information, refer to the reference manual for your interface card or
controller,

For example, if your RS-232C interface select code is 20, the device
address required to communicate over the RS-232C bus 1s 20.

Programming Over RS-232C
38

Lockout To lockout the front panel controls use the system command LOCKQUT.

Command When this function is on, all controls (except the power switch) are
entirely iocked out. Local control can only be restored by sending the
command :LOCKOUT OFF. For more information on this command sce
the chapter "Mainframe Commands” in this manual.

Note

Cyeling the power will also restore local control, but this will also
reset centain RS-232C states.

Programming Over RS-232C
9

Programming and Documentation 4
Conventions

Introduction This section covers the programming conventions used in programming
the instrument, as well as the documentations conventions used in this
manual. This chapter also contains a detailed description of the
command tree and command tree traversal.

|

Truncation Rule

The truncation rule for the mnemonics used in headers and alpha
arguments is:

o The mnemonic is the first four characters of the keyword unless the
fourth character is a vowel, then the mnemonic is the first three
characters of the keyword.

This rule will not be used if the length of the keyword is exactly four
characters. When the keyword only contains four characters, there is no
shortform of the command.

Some examples of how the truncation rule is applied to various commands
are shown in table 4-1.

Programming and Documentation Conventions
4-1

Table 4-1. Mnemonic Truncation

Longform Shortform
START STAR
CARDCAGE CARD
MENU MENU
SELECT SEL
PATTERN PATT

The Command The command tree (figure 4-1) shows all commands in the HP 16500A

Tree mainframe and the relationship of the commands to each other. You
should notice that the common commands are not actually included with
the command tree. Aftera < NL> (linefeed - ASCII decimal 10) has
been sent to the instrument, the parser will be set to the "root" of the
command tree.

Command Types The commands for this instrument can be placed into three types. The
three types are:

Common Commands. Common commands are independent of the tree,
and do not affect the position of the parser within the tree.

Example: "*CLS"

Mainframe Commands. The mainframe commands reside at the root of
the command tree. These commands are always parsable if they occur at
the beginning of a program message, or are preceded by a colon.

Example: "SELECT 1"

Programming and Documentation Conventions
4-2

Common
Commands

*CLS
*ESE
*ESR
*IDN
*IST

*OPC
*QPT
*FRE
*RST
*SRE
*STB

*TRG
*TST
*WAI

Subsystermn Commands. Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

SELect 0

SYSTem MMEMory INTermodule
BEEPer DATA AUToload DELete
CAPability DSP CATalog HTIMe
CARDcage ERRor COPY INPort
CESE HEADer DOWNIload INSert
CESR LONGform INITiaiize SKEW < N>
EOI PRINt LOAD[:CONfig] TREE
LER SETup LOAD:IASSembler TTIMe
LOCKout MSI
MENU PACK
MESE<N> PURGe
MESR <N > REName
RMODe STORe{:CONfig]
SELect UPLoad
SETColor
STARt
STOP

Figure 4-1. The HP 165004 Mainframe Command Tree

Programming and Documentation Conventions

4-3

Tree Traversal Rules Command headers are created by traversing down the command tree. A

Examples

Example 1

legal commang header from the command tree in figure 4-1 would be
"MMEM:INITIALIZE." This is referred to as a compound header. A
compound header is a header made of two or more mnemonics separated
by colons. The mnemonic created contains no spaces. The following
rules apply to traversing the tree:

e Aleading colon or a < program message terminator > (either a
<NL> or EOI true on the last byte) places the parser at the root of
the command tree. A leading colon is a colon that is the first
character of a program header.

e Executing a subsystem command places you in that subsystem (until a
leading colon or a < program message terminator > is found). In the
Command Tree, figure 4-1, use the last mnemonic in the compound
header as a reference point (for example INITIALIZE). Then find
the last colon above that mnemonic (MMEM:), and that is where the
parser will be. Any command below that point can be sent within the
current program message without sending the mnemonic(s) which
appear above them (STORE, etc.).

The following examples are written using HP BASIC 4.0 on a HP 9000
Series 200/300 Controller. The quoted string is placed on the bus,
foliowed by a carriage return and linefeed (CRLF).

The three Xs (XXX) shown in this manual after an ENTER or OUTPUT
statement refers to the device address for either HP-IB or RS-232C.

QUTPUT X00(*: SYSTEM:HEADER ON; LONGFORM ON*

In exampie 1, the colon between SYSTEM and HEADER is necessary
since SYSTEM:HEADER is a compound command. The semicolon
between the HEADER command and the LONGFORM command is the
required <program message unit separator >. The LONGFORM
command does not need SYSTEM preceding it, since the
SYSTEM:HEADER command sets the parser to the SYSTEM node in
the tree.

Programming and Documentation Conventions

4-4

Exampie 2 OUTPUT 00" MMEMORY:INITIALIZE; STORE ‘FILE_','FILE DESCRIPTION™

Example 3

or

OUTPUT 300" : MMEMORY: INITIALIZE"
OUTPUT XXX*: MMEMORY:STORE 'FILE__','FILE DESCRIPTION"

In the first line of example 2, the "subsystem selector” is implied for the
STORE command in the compound command. The STORE command
must be in the same program message as the INITIALIZE command,
since the < program message terminator > will place the parser back at
the root of the command tree.

A second way to send these commands is by placing "MMEMORY:"
before the STORE command as shown in the fourth line of example 2.

OUTPUT X004 MMEM:CATALOG?;: SYSTEM:PRINT ALL*

In example 3, the leading colon before SYSTEM tells the parser to go
back to the root of the command tree. The parser can then see the
SYSTEM:PRINT command.

Programming and Documentation Conventions

4-5

Infinity The representation of infinity is 9.9E + 37 for real numbers and 32767 for

Represe ntation integers. This is also the value returned when a measurement cannot be
made.

]

Sequential and

IEEE 488.2 makes the distinction between sequential and overlapped

Overl apped commands. Sequential commands finish their task before the execution of
the next command starts, Overlapped commands run concurrently, and
Commands therefore the command following an overlapped command may be started
before the overlapped command is completed. Some examples of
overlapped commands on the HP 16500A are:
START
§TOP
|
Res ponse IEEE 488.2 defines two times at which query responses may be buffered.
Generation The first is when the query is parsed by the instrument and the second is

when the controller addresses the instrument to talk so that it may read
the response. The HP 16500A will buffer responses to a guery when it is
parsed.

Programming and Documentation Conventions

46

Notation The following conventions are used in this manual in descriptions of
Conventions remote (HP-IB and RS-232C) operation:

and Definitions

< > Angular brackets enclose words or characters that are used to
symbolize a program code parameter or a bus command.

u= "is defined as." For example, A = B indicates that A can
be replaced by B in any statement containing A .

| "or": Indicates a choice of one element from a list. For example,
A | B indicates A or B, but not both.

.. An ellipsis (trailing dots) is used to indicate that the preceding
element may be repeated one or more times.

[1 Square brackets indicate that the enclosed items are optional.

{} When several items are enclosed by braces, one, and only one of
these elements must be selected.

XXX Three Xs after an ENTER or OUTPUT statement refer to
the device address for HP-IB or RS-232C.

The following definitions are used:

d = A single ASCII numeric character, 0-9.

n 1= A single ASCII non-zero, numeric character, 1-9.

Programming and Documentation Conventions
4.7

Syntax

Diagrams

Command
Structure

Common
Commands

<NL> := Linefeed (ASCI decimal 10).

<sp> := <white space>

white space ::= 0 through 32 (decimal) except linefeed (decimal 10)

<msus> 1= < mass storage unit specifier > (INTernall specifies
the front disc drive and INTernal0 specifies the rear disc drive)

At the beginning of each of the following chapters arc syntax diagrams
showing the proper syntax for each command. All characters contained in
a circle or oblong are literals, and must be entered exactly as shown.
Words and phrases contained in rectangles are names of items used with
the command and are described in the accompanying text of each
command. Each line can only be entered from one direction as indicated
by the arrow on the entry line. Any combination of commands and
arguments that can be generated by following the lines in the proper
direction is syntactically correct. An argument is optional if there is a
path around it. When there is a rectangle which contains the word
"space,” a white space character must be entered. White space is optional
in many other places.

The HP 16500A programming commands are divided into three types:
common commands, mainframe commands, and subsystem commands. A
programming command tree is shown in figure 4-1 and a programming
command cross-reference is shown in table 4-2.

The common commands are the commands defined by IEEE 488.2.
These commands control some functions that are common to all IEEE
488.2 instruments. Sending the common commands do not take the
instrument out of a selected subsystem.

Programming and Documentation Conventions

4-8

Mainframe
Commands

Subsystem
Commands

Program
Examples

The mainframe commands control many of the basic functions of the
instrument.

There arc several subsystems in this instrument. Only one subsystem may
be selected at any given time. At power on, the command parser is set to
the root of the command tree, and therefore, no subsystem is selected.

Note

When a <program message terminator> or a leading colon (:)
is sent in a program message, the command parser is retumned to
the root of the command tree.

The 3 subsystems in the HP 16500A mainframe are:

e System - controls some basic functions of the instrument.
o Mmemory - provides access to both internal disc drives.
e Intermodule - allows intermodule arming between multiple modules.

The program examples given for each command in the following chapters
and appendices were writicn on an HP 9000 Series 2007300 controller
using HP BASIC 4.0 language. The programs always assume a generic
address of XXX. If a printer is used, it is always assumed to be connected
to the non-controller interface and activated by the :SYSTEM:PRINT
command.

In these examples, special attention should be paid to the ways in which
the command/query can be sent. The way the instrument is set up to
respond to a command/query has no bearing on how you send the
command/query. That is, the command/query can be sent using the
longform or shortform if one exists for that command. You can send the
command/query using upper case (capital) letters or lower case (small)
letiers; both work the same. Also, the data can be sent using almost any
form you wish. If you were sending a channel 1 range value to the
oscilloscope module of 100 mV, that value could be sent using a decimal
(.1), or an exponential (1e-1 or 1.0E-1), or a suffix (100 mV or 100MV).

Programming and Documentation Conventions
4-9

Note

The contents of a string is case sensitive and must be expressed
exactly the same each time it is used.

As an example, set channel 1 range of the oscilloscope module to 100 mV
by sending one of the following:

& commands in longform and using the decimal format.

OUTPUT X0 CHANNEL1:RANGE .1

e commands in shortform and using an exponential format.

OUTPUT X00(":CHANT:RANG 1E-1"

® commands using lower case letters, shortforms, and a suffix,

QUTPUT 200 "chan:rang 100 m*

Note

In these examples, the colon shown as the first character of the
command is optional on the HP 165004. The space between
RANGE and the argument is required.

To observe the headers for queries, you must bring the returned data into
a string variable. Generally, you should also dimension all string variables
before reading the data.

If you do not need to see the headers and a numeric value is returned
from the HP 16500A, then you should use a numeric variable. In this case
the headers should be turned off.

Note

The contents of strings " " are case Sensitive (label names, efc.).

Programming and Documentation Conventions

4-10

Command Set
Organization

The command set for the HP 16500A mainframe is divided into 5 separate
groups: Common commands, mainframe commands and 3 sets of
subsystem commands. Each of the 5 groups of commands is described in
the following chapters. Each of the chapters contain a brief description of
the subsystem, a set of syntax diagrams for those commands, and finally,
the commands for that subsystem in alphabetical order. The commands
are shown in the longform and shortform using upper and lowercase
letters. As an example SELect indicates that the longform of the
command is SELECT and the shortform of the command is SEL. Each of
the commands contain a description of the command and its arguments,
the command syntax, and a programming example.

Note

Each module within the HP 165004 will include additional sets
of subsystem commands. For a list of these subsystem
commands, refer to the individual programming manuals for
each module.

Programming and Documentation Conventions
4-11

Table 42. Alphabetic Command Cross-Reference

Command Where Used Command Where Used
AUToload MMEMory Subsystem ‘MMEMory Subsystem Selector
BEEPer Mainframe Command MSI MMEMory Subsystem
CAPability? Mainframe Command *OPC Common Command
CARDcage? Mainframe Command *OPT? Common Command
CATalog? MMEMory Subsystem PACK MMEMory Subsystem
*CLS Common Command *PRE Common Command
COPY MMEMory Subsystem PRINt SYSTem Subsystem
DEBug Mainframe Command PURGe MMEMory Subsystem
DELete INTermodute Subsystem REName MMEMory Subsystem
DOWNIload MMEMory Subsystem RMODe Mainframe Command
DSP SYSTem Subsystem *RST Common Command
EOI Mainframe Command SELect Mainframe Command
ERRor? SYSTem Subsystem SETColor Mainframe Command
*ESE Common Command SETup SYSTem Subsystem
*ESR? Common Command SKEW INTermodule Subsysiem
HEADer SYSTem Subsystem SOUNd Mainframe Command
HTIMe? INTermodule Subsystem *SRE Common Command
*IDN? Common Command STARt Mainframe Command
INITialize MMEMory Subsystem *STB? Common Command
INPort INTermodule Subsystem STOP Mainframe Command
INSert INTermodule Subsystem STORe MMEMory Subsystem
[INTermodule Subsystem Selector :8YSTem Subsystem Selector
*IsT? Common Command TREE INTermodule Subsystem
LER? Mainframe Command *TRG Common Command
LOAD MMEMory Subsystem *TST? Common Command
LOCKout Mainframe Command TTIMe? INTermodule Subsystem
LONGform SYSTem Subsystem UPLoad? MMEMory Subsystem
MENU Mainframe Command *WAI Common Command

Programming and Documentation Conventions

4-12

Common Commands 5

Introduction

The common commands are defined by the IEEE 488.2 standard. These
commands will be common to all instruments that comply with this
standard.

The common commands control some of the basic instrument functions,
such as instrument identification and reset, how status is read and cleared,
and how commands and queries are received and processed by the
instrument.

Common commands can be received and processed by the HP 16500A
whether they are sent over the bus as separate program messages or
within other program messages. If an instrument subsystem has been
selected and a common command is received by the instrument, the
instrument will remain in the selected sybsystem. For example if the
program message

“MMEMORY:INITIALIZE;*CLS; STORE 'FILE__ ', 'DESCRIPTION"

is received by the instrument, the instrument will initialize the disc and
store the file; and clcar the status information. This would not be the casc
if some other type of command were received within the program
message. For example, the program message

“MMEMORY:INITIALIZE;: SELECT 1;:MMEMORY:STORE 'FILE__','DESCRIPTION™

would initialize the disc, select the module in slot A, then store the file. In
this example :MMEMORY must be sent again in order to reenter the
mmemory subsystem and store the file.

Common Commands
5-1

Common Commands
52

Each status register has an associated status enable (mask) register. By
setting the bits in the mask value you can select the status information you
wish to use. Any status bits that have not been masked (enabled in the
enable register) will not be used to report status summary information to
bits in other status registers.

Refer to appendix B for a complete discussion of how to read the status
registers and how to use the status information available from this

Instrument.

Refer to figure 5-1 for the common commands syntax diagram.

eS8/ 5x81

mask = An integer, 0 through 255. This number is the sum of all the bits in
the musk corresponding to conditions that are enabled. Refer to the *ESE
and *SRE commands for bit definitions in the enable registers.

pre_mask = An integer, 0 through 63535. This number is the sum of all bits
in the mask corresponding to conditions that are enabled. Refer to the *PRE
cormmmand for bit definitions in the enable register.

Figure 5-1. Cornmon Commands Syntax Diagram

Common Commands
53

*CLS

R
*CLS - (Clear Status) command

The *CLS common command clears all event status registers, queues, and
data structures, including the device defined error queue and status byte.
I the *CLS command immediately follows a < program message
terminator >, the output queue and the MAV (Message Available) bit
will be cleared.

Command Syntax: *CLS
Example: QUTPUT XXX "*CLS"

Note
Refer to Appendix B for a complete discussion of status.

Common Commands
54

*ESE

Command Syntax:

where:

<mask >

Example:

*ESE

(Event Status Enable) command/query

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a mask value for the
bits to be enabled in the Standard Event Status Register. A one in the
Standard Event Status Enable Register will enable the corresponding bit
in the Standard Event Status Register which sets the ESB bit in the status
byte. A zero will disable the bit. Refer to table 5-1 for information about
the Standard Event Status Enable Register bits, bit weights, and what each
bit masks.

The *ESE query returns the current contents of the enable register.

Note
Refer to Appendix B for a complete discussion of status.

*ESE <mask>

= 0 to 255 (integer)
OUTPUT X0 *ESE 32

In this example, the *ESE 32 command will enable CME (Command
Error), bit 5 of the Standard Event Status Enable Register. Therefore,
when a command error occurs, the event summary bit (ESB) in the Status
Byte Register will also be set.

Common Commands

5-5

*ESE

Query Syntax:

Returned Format:

*ESE?

<mask > <NL>

Example: 10 DIM Event$[100]
20 QUTPUT JOO(*ESE?"
30 ENTER XC(Event$
40 PRINT Event$
50 END
Table 5-1. Standard Event Status Enabie Register
Bit Weight Enables
7 128 PON - Power On
6 64 URQ - User Request
5 32 CME - Command Error
4 16 EXE - Execution Error
3 8 DDE - Device Dependent Error
2 4 QYE - Query Errot
1 2 RQC - Request Control
0 1 OPC - Operation Complete

High - enables the ESR bit

Common Commands
5-6

*ESR

Query Syntax:
Returned Format:

where:;

< status >

Example:

*ESR

{Event Status Register) query

The *ESR query returns the contents of the Standard Event Status
Register. Reading the register clears the Standard Event Status Register.

*ESR?

<gtatus > <NL>

i1= (to 255 (integer)

10 DIM Esr_event${100]
20 OUTPUT J00(**ESR?"
30 ENTER X00(Esr_event$
40 PRINT Esr_event$

50 END

With the example, if a command error has occurred the variable
"Esr_event" will have bit 5 (the CME bit) set.

Table 5-2 shows the Standard Event Status Register. The table shows
each bit in the Standard Event Status Register, and the bit weight. When
vou read Standard Event Status Register, the value returned is the total bit
weights of all bits that are high at the time you read the byte.

Common Commands
5.7

*ESR

)
Table 5-2. The Standard Event Status Register.

BIT BIT BIT CONDITION
WEIGHT NAME
7 128 PON 0 = Register read - not in power up mode
1 = Powerup
6 64 URQ 0 = user request - not used - always zero
5 32 CME 0 = no command errors
1 = a command error has been detected
4 16 EXE 0 = no execution errors
1 = an execution error has been detected
3 8 DDE 0 = no device dependent errors
1 = a device dependent error has been detected
2 4 QYE 0 = no query errors
1 = a query error has been detected
1 2 RQC 0 = request control - NOT used - always 0
0 1 OPC 0 = operation is not complete
1 = operation is complete

0 = False = Low
1 = True = High

Commeon Commands
5-8

*IDN

R
*IDN (Identification Number) query

The *IDN? query aliows the instrument to identify itself. It returns the
string:
"HEWLETT-PACKARD, 16500A,0,REV <revision code >*

An *IDN? query must be the last query in a message. Any queries after
the *IDN? in the program message will be ignored.

Query Syntax: =DN?
Returned Format: HEWLETT-PACKARD,16500A,0,REV < revision code >

where:

<revision code> ::= four digit code in the format X0LXX representing the current ROM revision

Example: 10 DIM id$[100]
20 OUTPUT 330K “*IDN?"
30 ENTER Y00, 1d$
40 PRINT Kd$
50 END

Common Commands
59

*IST

*IST

Query Syniax:
Returned Format:

where:
<id>

1
0

Example:

Common Commands
5-10

(individual Status) query

The *IST query allows the instrument to identify itself during parallel poll
by allowing the controller to read the current state of the IEEE 488.1
defined "ist" local message in the instrument. The response to this query is
dependent upon the current status of the instrument.

Figure 5-2 shows the *IST data structure.

*IST?

<id> <NL>

a=0or1
indicates the "ist” local message is false
indicates the "ist" local message is true

10 DIM Event${100]

20 QUTPUT X0 =IST™
30 ENTER XXX Event$
40 PRINT Event$

50 End

*IST

DEVICE DEFINED CONDITIONS SUMMARY MESSAGE
EEEEEEENEEREEEEE
DEVICE DEF INED Y ' L !] STATUS BYTE
Coub1Tions . | 35] 14 18] 2 [welofe] [7 MSSIESE}MV]'CLI 2 | 1 {wSB] “REGTETER
CE
‘ i
&
» [
- (s ;
4
- &
- (&
[
st - &
- &
-4 y Ar
2 . 5)
2 Y
€ &
< /"
e (&
T
- P
1
B : ¢
i ; &
i \/]‘) \
b T : * ﬁ& '
- l | A&)
TN
. , (a
§
I |
Y N 7161 5l 3 2] 1] 6] ARALLEL POLL
swgpvIouRs | Pislozl e s Te EBER t2] |ENAEIkE.;iREEGISTER
% :As TU?‘S FRE?

16500 /8, 28

Figure 5-2. *IST Data Structure

Common Commands
5-11

*OPC

*OPC

Command Syntax:
Example:

Query Syntax:
Returned Format:

Example:

Commeon Commands
5-12

(Operation Complete) command/query

The *OPC command will cause the instrument to set the operation
complete bit in the Standard Event Status Register when all pending
device operations have finished. The commands which affect this bit are
the Overlapped Commands. An Overlapped Command is a command
that allows execution of subsequent commands while the device
operations initiated by the Overlapped Command are still in progress.
Some examples of overlapped commands for the HP 16500A are:

STARt
STOP

Additional overlapped commands are defined in the individual
programming manuals for each module.

The *OPC query places an ASCII "1" in the output queue when all
pending device operations have been completed.

*OPC

OUTPUT XX "*QPC”
*QPC?

1<NL>

DIM Status$[100]

20 OUTPUT X04**0OPC?
30 ENTER X{X;Status$
40 PRINT Status$

50 END

*OPT

Query Syntax:

Returned Format:

where:

< option >
< module >

Example:

*OPT

{Option Identification) query

The *OFPT query identifics the software instalied in the HP 16500A. This
query returns nine parameters. The first parameter indicates whether you
arc in the System. The next two parameters indicate any software options
instalied, and the next parameter indicates whether intermodule is
available for the System. The last five parameters list the installed
software for the modules in slot A through E of the mainframe, A zeroin
any of the last eight parameters indicates that the corresponding software
is not currently installed.

*OPT?

{SYSTEM},{ < option > |0},{ < option > |C},
{INTERMODULE|0},{ «module > |0},{ <module > |0},
{<module > |0},{ <module > |0},{ <moduie > |0} <NL>

1= name of software option
1= name of module sottware

Note

The name retumed for sofiware options and module software is
the same name that appears in the field in the upper-ieft corner
of the menu for each option or modude.

10 DIM Cption$[200]

20 OUTPUT X0 "*OPT?"
30 ENTER XXX;Option$
40 PRINT Option$

50 END

Common Commands
5-13

*PRE

*PRE

Command Syntax:

where;

< pre_mask >

Example:

Query Syntax:
Returned format:

where:

<mask >

Example:

Common Commands
5-14

(Paratlel Poll Enable Register Enable) command/query

The *PRE command sets the parallel poll register enable bits. The
Parallel Poll Enable Register contains a mask value which is ANDed with
the bits in the Status Bit Register to enable an "ist" during a parallel poll.
The query returns the current value of the register.

Refer to table 5-3 for the bits in the Paralle]l Poll Enable Register and
what they mask.

*PRE <mask>

:: = 0 to 65535 (integer)
Output XXX;"*PRE 16"

This example will allow the HP 16500A to generate an "ist” when a
message is available in the output queve. When a message is available, the
MAYV (Message Available) bit in the Status Byte Register will be high.

"*PRE?"

<mask> <NL>

1= sum of all bits that are set - O through 65535

10 DIM Pre_value${100]
20 OUTPUT XXX;"*PRE?"
30 ENTER XXX;Pre_value$
40 PRINT Pre_values$

50 END

*PRE

I
Table 5-3. HP 165004 Parallel Poll Enable Register
Bit Weight Enables
15-8 not used
7 128 not used
6 64 MSS - Master Summary Status
5 32 ESB - Event Status
4 16 MAY - Message Available
3 8 LCL - Local
2 4 not used
1 2 not used
0 1 MSB - Module Summary

Common Commands
5-15

*RST
I
*RST ' (Reset) command

The *RST command (488.2) is not implemented on the HP 16500A. The
HP 16500A will accept this command, but the command has no affect on
the instrument.

Note

The *RST command is generally used to place the instrument in
a predefined state. Since the HP 165004 allows you to store
predefined configuration files for individual modules or the
entire system, resetting the instrument can be accomplished by
simply loading the appropriate configuration file. For more
information, refer to the chapter "Mmemory Subsystem" in this
manual.

Common Commands
5-16 .

*SRE

Command Syntax:

where:

<mask >

Example:

*SRE

(Service Request Enable) . command/query

The *SRE command sets the Service Request Enable Register bits, The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A
zero will disable the bit. Refer to table 5-4 for the bits in the Service
Request Enable Register and what they mask.

The *SRE query returns the current value.

Note
Refer to Appendix B for a complete discussion of status.

*SRE <mask >

= 0 to 255 (integer)

OUTPUT X0 "*SAE 16

This example enables a service request to be generated when a message is
available in the output quene. When a message is available, the MAV
(Message Available) bit will be high.

Common Commands
5-17

*SRE

|
Query Syntax:

Returned Format:

where:

<mask >

Example:

"*SRE?

<mask> <NL>

;1= sum of all bits that &re set - 0 through 255

10 DIM Sre_value$[100}
20 QUTPUT X0 "*SRE?"
30 ENTER X)XX;Sre_value$
40 PRINT Sre_value$

50 END

Tabie 5-4. HP 165004 Service Request Enable Register

Bit Weight Enables
15-8 not used
7 128 not used
6 64 MSS - Master Summary Status
5 32 ESB - Event Status
4 16 MAV - Message Available
3 8 LCL - Local
2 4 not used
1 2 not used
0 1 MSB - Module Summary

Common Commands
5-18

*STB

I
*STB (Status Byte) query

The *STB query returns the current value of the instrument’s status byte.
The MSS (Master Summary Status) bit and not RQS (Reguest Service)
bit is reported on bit 6. The MSS indicates whether or not the device has
at least one reason for requesting service. Refer to table 5-5 for the
meaning of the bits in the status byte.

Note
Refer to Appendix B for a complete discussion of status.

Query Syntax: *STB?
Returned Format; <value> <NL>

where:

<value> = 0through 255 (integer)

Exampie: 10 DIM Stb_value$[100)
20 QUTPUT XXX;"*STB?
30 ENTER XXX; Stty_value$
40 PRINT Stb_value$
50 END

Common Commands
5-19

*STB

|
Table 5-5. The Status Byte Register.
BIT BIT BIT CONDITION
WEIGHT NAME

7 128 - 0 = not used

6 64 MSS 0 = instrument has no reason for service
1 = instrument is requesting service

5 32 ESB 0 = no event status conditions have occurred
1 = an enabled event status condition

has occurred

4 16 MAV 0 = no output messages are ready
1 = an output message is ready

3 8 LCL 0 = a remote-to-local transition has not occurred
1 = a remote-to-local transition has occurred

2 4 - not used

1 2, - not used

0 1 MSB 0 = a module or the system has activity to report
1 = no activity to report

0 = False = Low
1 = True = High

Common Commands

5-20

*TRG

R
*TRG (Trigger) command

The *TRG command has the same effect as a Group Execute Trigger
(GET). That effect is as if the START command had been sent for
intermodule group run. If no modules are configured in the Intermodule
menu, this command has no effect.

Command Syntax: *TRG

Example: OQUTPUT X00(**TRG"

Common Commands
5.21

*TST

*TST

CQuery Syntax:
Retumed Format:

where:

<result>

Example:

Common Commands
5-22

(Test) query

The *TST query returns the results of the power-up sclf-test. The result
of the test is a 9-bit mapped value which is placed in the output queue. A
onc in the corresponding bit means that the test failed and a zero in the
corresponding bit means that the test passed. Refer to table 5-6 for the
meaning of the bits returned by a TST? query.

“TST?

<result> < NL>

= 0 through 511 (integer)

10 QUTPUT X0 *TST?*
20 ENTER XXX Tst_value
30 PRINT Tst_value

40 END

*TST

|
Table 5-6. Bits Returned by TST? Query
{Power-Up Test Results).
BIT BIT TEST
WEIGHT

8 256 Front Disc Test
7 128 Rear Disc Test
6 64 Touchscreen Test
5 32 (not used - always zero)
4 16 (not used - always zero)
3 8 Display Test
2 4 Interrupt Test
1 2 RAM Test
0 1 ROM Test

Common Commands
5-23

*WAI

*WAI

Command Syntax:

Example:

Common Commands
5-24

(Wait) command

The *WAI command causes the device to wait until the completion of all
overlapped commands before executing any further commands or queries.
An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are still in progress. Some examples of overlapped
commands for the HP 16500A are:

STARt
STOP

Additional overlapped commands are defined in the individual
programming manuals for each module.

“WAI

OUTPUT X0 *WAl

Mainframe Commands 6

Introduction Mainframe commands control the basic operation of the instrument.
They can be called at anytime, and from any module. Refer to figure 6-1
for the Mainframe commands syntax diagram.

= Y
——@J——(BEET +

{ space ={ OFF | &
—w={ BEEPer? } -
—e{ CAPability”

T T
—e={ CARDcage” }

CESE E——’ value

= EOI? }
e LER? }
Akt D enoen | SArE
kout | . c FF }
‘—-' LOCkout } space { Of |@‘,
‘ 0N [1 b
[

P —
—= | OChout?)

I i

Figure 6-1. Mainframe Commands Syntax Diagram

Mainframe Commands
6-1

MENU - spoce - modu le
el
MESE ——l' ingex | —1[space i——-—{ engbie_vaiue }—-—-
{ %3
MESE ingex
(vesk) ingex ; ?
SINGle

[—-{ RMODe>)

SELect tpace modu te
o SELect? }
SETColor DEFoult
spoce color hue
sot /T\ um i
»-I—CSETCo\Dr" '—‘[space., color

value = integer, 0 to 255.
module =integer, -2 (0 5.

18520/ ENE2

menu = integer. Refer to the individual programming manuals for each
module and the system for specific menu number definitions.

enable_value = integer, 0 to 255.
index = integer, Q10 5.

color = integer, 0 to 7. Color number cannot be changed.

hue = integer, 0 to 100.
sat = integer, 0to 100.
lum = integer, 0 to 100.

Figure 6-1. Mainframe Commands Syntax Diagram (Continued)

Mainframe Commands
6-2

BEEPer

]
BEEPer command/query

The BEEPer command sets the beeper mode, which turns the beeper
sound of the instrument on and off. When BEEPer is sent with no
argument, the beeper will be sounded without affecting the current mode.
The query returns the mode currently selected.

Command Syntax: :BEEPer [{ON|1}|{OFF|0}]

Examples: OUTPUT X" BEEPER"
OUTPUT Y00 *: BEEP ON*

Query Syntax: :BEEPer?
Returned Format: [:BEEPer] {110} <NL>

Example: 10 DIM Mode$[100]
20 OUTPUT X)0¢4:*BEEPER?"
30 ENTER X0¢Mode$
40 PRINT Mode$
50 END

Mainframe Commands
6-3

CAPability

]
CAPability

The CAPability query returns the HP-SL and lower level capability sets

implemented in the device.

Table 6-1 lists the capability sets implemented in the HP 16500A

Query Syntax: :CAPability?

Returned Format: [:CAPability] IEEE488,1987,8H1,AH1,T5,L4,5R1,RL1,PP1,DC1,DT1,C0,E2<NL>

Example: 10 DIM Response${100]
20 QUTPUT X004 " CAPABILITY?
30 ENTER X>(¢Response$
40 PRINT Response$
50 END
Table 6-1. HP 165004 Capability Sets
Mnemonic Capability Name Implementation
SH Source Handshake SH1
AH Acceptor Handshake AH1
T Talker (or TE - Extended Talker) T5
L Listener (or LE - Extended Listener) L4
SR Service Request SR1
RL Remote Local RL1
PP Paralle] Poll PP1
DC Device Clear DC1
DT Device Trigger DT1
C Any Controller Co
E Electrical Characteristic E2

Mainframe Commands
6-4

CARDcage

Query Syntax:

Returned Format:

where:

<lD>
< assign >

Example:

CARDcage

query

The CARDcage query returns a series of integers which identifies the
modules that are installed in the mainframe. The first five numbers
returned are the card identification numbers {a -1 means no card is in the
slot). The remaining five numbers returned indicate the module
assignment for each card. The possible values for the module assignment
are 0, 1,2, 3, 4, and 5 where 0 indicates an empty slot or the module
software is not recognized or not loaded. 1...5 indicates the number of the
slot in which the master card for this card is located.

Table 6-2 lists the card identification numbers for the first five parameters
and their associated cards.

:CARDcage?

[:CARDcage) <ID>,<ID>,<ID>,<ID>,<ID>,
< assign >, <assign >, <assign >, <assign >, <assign> <NL>

;1= card identification number (integer)
© = module assignment (integer)

10 DIM Gard$[100}

20 OUTPUT XXX;*:CARDCAGE?"
30 ENTER XXX;Card$

40 PRINT Cards

50 END

Mainframe Commands
6-5

CARDcage

|
Table 6-2. Card Identification Numbers
1D Number Card
31 HP 16510A Logic Analyzer Card
1 HP 16515A 1 GHz Timing Master Card
2 HP 16516A I GHz Timing Expansion Card
21 HP 16520A Pattern Generator Master Card
2 HP 16521A Pattern Generator Expansion Card
11 HP 16530A Oscilloscope Timebase Card
12 HP 16531A Oscilloscope Acquisition Card

Note

Refer to the individual programming manuals for each module
for cards not listed in table 6-2.

Mainframe Commands
6-6

CESE

L
CESE (Combined Event Status Enable) command/query

The CESE command sets the Combined Event Status Enable register.
This register is the enable register for the CESR register and contains the
combined status of all of the MESE (Module Event Status Enable)
registers of the HP 16500A. The query returns the current setting.

Tabie 6-3 lists the bit values for the CESE register.
Command Syntax: :CESE <value>

where:

<value> = 01to 255 (integer)

Example: QUTPUT %04 CESE 32
Query Syntax: :CESE?
Returned Format: [:CESE] <value > <NL>

Example: 10 DIM Setting$[100]
20 OUTPUT XXX;"-CESE?"
30 ENTER X00(Setting$
40 PRINT Setting$
50 END

Mainframe Commands
6-7

CESE

|
Table 6-3. HP 165004 Combined Event Status Enable Register

Bit Weight Enables

not used

not used
Module in slot E
Module in slot D
Module in slot C
Module in slot B
Module in slot A
Intermodule

O - N W RS)
r—-w-hoog:kjgg

Mainframe Commands
6-8

CESR

-
CESR (Combined Event Status Register) query

The CESR query returns the contents of the Combined Event Status
register. This register contains the combined status of all of the MESRs
(Module Event Status Registers) of the HP 16500A. Table 6-4 lists the bit
values for the CESR register.

Query Syntax: :CESR?
Returned Format; [:CESR] <value> <NL>

where:

<value> = to 255 (integer)

Example: 10 DIM Event$[100]
20 QUTPUT XXX CESR?"
30 ENTER »00(Events$
40 PRINT Event$
50 END

Mainframe Commands
6-9

CESR

Table 6-4. HP 165004 Combined Event Status Register

Bit Bit Bit Condition
Weight Name
7 128 0 = not used
6 64 0 = not used
5 32 Module E 0 = No New Status
1 = Status to Report
4 16 Module D 0 = No New Status
1 == Status to Report
3 8 Module C {0 = No New Status
1 = Status to Report
2 4 Module B 0 = No New Status
1 = Status to Report
1 2 Module A 0 = No New Status
1 = Status to Report
0 1 Intermodule 0 = No New Status
1 = Status to Report

Mainframe Commands

6-10

EOI

R
EOI (End Or Identify) command/query

The EOI command specifies whether or not the last byte of a reply from
the instrument is to be sent with the EQI bus control line set true or not.
If EOl is turned off, the box will no longer be sending 488.2 compliant
responses. The guery returns the current status of EQI.

Command Syntax: :EQI{{ON]1}|{OFF|0}}
Example: OUTPUT X00(":EQI ON*
Query Syntax; :EOR
Returned Format: [:EOI] {10} <NL>

Example: 10 DIM Mode$[100]
20 OUTPUT X004 EOI?"
30 ENTER X000 Mode$
40 PRINT Mode$
50 END

Mainframe Commands
6-11

LER
I

LER (LCL Event Register) query

The LER query allows the LCL Event Register to be read. After the LCL
Event Register is read, it is cleared. A one indicates a remote-to-local
transition has taken place. A zero indicates a remote-to-local transition
has not taken place.

Query Syntax: LER?
Returned Format: [:LER} {0|1} <NL>

Example: 10 DIM Event$[100]
20 OUTPUT X006 LER?"
30 ENTER J00GEvents
40 PRINT Evertt$
50 END

Mainframe Commands
6-12

LOCKout

Command Syntax:
Exarnple:

Query Syntax:
Returned Format:

Example:

LOCKout

command/query

The LOCKout command locks out or restores front panel operation.
When this function is on, all controls (except the power switch) are
eatirely locked out. The LOCKout query returns the current status of the

LOCKout command.

:LOCKout {{ON]|1} | {OFF |0}}

QUTPUT XXX;":LOCKOUT ON"

:LOCKout?

[:LOCKout] {0]1} <NL>

10 DIM Status$[100]

20 CUTPUT XX¢=:LOCKOUT?"
30 ENTER XXX;Status$

40 PRINT Status$

50 END

Mainframe Commands
6-13

MENU

MENU command/query

The MENU command puts a menu on the display. The first parameter
specifies the desired module. The optional second parameter specifies
the desired menu in the module (defaults to 0).

Command Syntax: :MENU <module>[,<menu>]|

where:
<module> = selects module or system {-2 to 5) {integer)
<menu> : = selects menu (integer)

Example: QUTPUT X0¢MENU 0,1"

For the first parameter:

0 - System/Intermodule
1 - Module in slot A

2 - Module in slot B

3 - Module in slot C

4 - Module in slot D
5-Module in slot E

-1 - Software option 1
-2 - Software option 2

For the System:

MENU(,0 - System Configuration menu
MENU 0,1 - Rear disc menu

MENU 0,2 - Front disc menu

MENU 0,3 - lhilities menu

MENU 0,4 - Test menu

MENU (.5 - Intermodule menu

Mainframe Commands
6-14

MENU

Note
Refer to the individual programming manuals for each module
Jor specific menu number definitions for each module.

The MENU query returns the current menu selection.
Query Syntax: :MENU?
Returned Format: [:MENU] <module>,<menus> <NL>

Example: 10 DIM Response$[100]
20 QUTPUT X0 MENU?"
30 ENTER XXX;Response$
40 PRINT Response$
50 END

Mainframe Commands
6-15

MESE<N>

MESE<N>

Command Syntax:

where;

<N>
<enable_value >

Example:
Query Syntax:
Returned Format:

Example:

Mainframe Commands
6-16

(Module Event Status Enable) command/query

The MESE command sets the Module Event Status Enable register. This
register is the enable register for the MESR register. The <N > index
specifies the module, and the parameter specifies the enable value. 1...5
refers to module in slot A..E and 0 refers to intermodule. The query
returns the current setting,

Refer to table 6-5 and the individual programming manuals for each
module for information about the Module Event Status Enable register
bits, bit weights, and what each bit masks.

‘MESE<N> <enable_value -

:= D through 5 (integer)
1= 0 through 255 (integer)

OUTPUT X0 MESE1 3
‘MESE<N>?
[(MESE<N>] <enable_value> <NL>

10 DIM Event$[100]

20 QUTPUT XXX;":MESE1?"
30 ENTER 707;Event$

40 PRINT Events

80 END

MESE<N>

Table 6-5. HP 165004 Mainframe (Intermodule) Module Event Status Enable Register

Bit

Weight

Enables

S e N W RN

Hwam;ﬁgg

not used
not used
not used
not used
not used
not used

RNT - Intermodule Run Until Satisfied
MC - Intermodule Measurement Complete

Mainframe Commands
6-17

MESR<N>
PR
MESR<N> (Module Event Status Register) query

The MESR query returns the contents of the Module Event Status
register. The <N> index specifies the module. 1..5 refers to module in
slot A...E and 0 refers to intermodule.

Refer to table 6-6 and the individual programming manuals for each
module for information about the Module Event Status Register bits and
their bit weights.

Query Syntax: :MESR<N>?

Returmned Format: [:MESR<N>] <enable_value > <NL>

where:
<N> = Qthrough 5 (integer)
<enable value> = 0through 255 (integer)

Example: 10 DIM Event$[100]
20 QUTPUT XXX, ":MESR17?"
30 ENTER X004 Event$
40 PRINT Event$
50 END

Mainframe Commands
6-18

MESR<N>

Table 6-6. HP 165004 Mainframe Module Event Status Register

Bit Bit Bit Condition
Weight Name
7 128 (0 = not used
6 o4 0 = not used
5 32 0 = not used
4 16 0 = not used
3 8 0 = not used
2 4 0 = not used
1 2 RNT 0 = Intermodule Run until
not satisfied
1 = Intermodule Run until
satified
0 1 MC (0 = Intermodule Measurement
not complete
1 = Intermodule Measurement
complete

Mainframe Commands

6-19

RMODe

RMODe

Command Syntax:
Example:

Query Syntax:
Returned Format:

Exampte:

Mainframe Commands
6-20

command/query

The RMODe command specifies the ran mode for the selected moduie
(or Intermodule). The query returns the current setting. If the selected
module is in the intermodule configuration, then the "intermodule” run
mode will be set by this command.

Note

After specifying the run mode, use the STARt command to start
the acquisition.

:RMODe {SINGle | REPetitive }
QUTPUT X00:":RMCDE SINGLE"
:RMODe?

[:RMODe] {SINGle | REPetitive} < NL >

10 DIM Mode$[100]

20 QUTPUT XX%;":RMODE?"
30 ENTER XX Mode$

40 PRINT Mode$

50 END

SELect

SELect command/query

The SELect command selects which module (or System) will have parser
control. The appropriate moduie (or System) must be selected before any
module (or system) specific commands can be sent. SELECT 0 selects
System, SELECT 1 through 5 selects modules A through E. -1 and -2
selects software options 1 and 2 respectively. The query returns the
current module selection.

Figure 6-2 shows the command tree for the SELect command.

Note
SELect defaults to System (0) at power up.

Command Syntax: :SElLect <module>

where:

<module> = -2 through 5 (integer)
Exampie: OUTPUT X0¢* SELECT 0
Query Syntax: :SELect?
Returned Format: [:SELect] <module> <NL>

Example: 10 DIM Moduie$[100]
20 QUTPUT X00(:*:SELECT?
30 ENTER XXX;Module$
40 PRINT Module$
50 END

Mainframe Commands
6-21

SELect

Mainframe Commands
6-22

(SELECT

(SELECTS

F—— 11— (SELECTS

{SELECTS

(SELECTS

(SELECTS

(SELECTS

t———1—— (SELELTS

N— -2 —— {SELECTS

SYSTEM/ INTERMODULE D

MODULE IN SLOT AD

MCDULE IN SLOT B)

MODULE IN SLOT)

MODULE IN SLOT D)

MODULE TN SLOT £

CPTION 1)

CPTION 22

16588 /8117

Figure 6-2. Select Command Tree

Note

When a module is selected, the parser recognizes the module's
commands and the System/Intermodule commands. When
SELECT 0is used, only the System/Intermodule commands are

recognized by the parser.

SETColor
[

SETColor

command/query

The SETColor command is used to change one of the color selections on
the CRT, or to return to the default screen colors. Four parameters are
sent with the command to change a color:

Color Number (first parameter),
Hue (second parameter),
Saturation (third parameter), and
Luminosity (last parameter),

Command Syntax: :SETColor { <color>, <hue>, <sat>, <ium > | DEFault}

where:

<eolor> = 0to7 (integer)
<hue> = 0to 100 (integer)
<sat> = 0to 100 (integer)
<lum> 1= 00 100 (integer}

Note

Color Number 0 cannot be changed.

Example: OUTPUT 0" SETCOLOR 3.60,100,80"
OUTPUT XxXX;*:SETC DEFAULT

Mainframe Commands
6-23

SETColor

I
The SETColor query returns the hue, saturation, and luminosity values for

a specified color.

Query Syntax: :SETColor? <color>
Returned Format: [:SETColor] <color>,<hue >, <sat>,<lum> <NL>

Exampie: 10 DIM Color$[100]
20 OUTPUT XX SETCOLOR? 3
30 ENTER XXX;Color$
40 PRINT Color$
50 END

Mainframe Commands
6-24

STARt

STARt command

The STARt command starts the selected module (or Intermoduie)
running in the specified run mode (see RMODe). If the specified module
is in the Intermodule configuration, then the "Intermodule” run will be

started.

Note

The STARt command is an Overlapped Command. An
Overiapped Command is a command that allows execution of
subsequent commands while the device operations initiated by

the Overlapped Command are still in progress. For more
information, refer to the *OPC and *WAI commands in the

chapter "Common Commands.”

Command Syntax: :STAR:

Example: OQUTPUT XXX;":START"

Mainframe Commands
6-25

STOP
STOP command

The STOP command stops the selected module (or Intermodule). If the
specified module is in the Intermodule configuration, then the
"Intermodule” run will be stopped.

Note

The STOP command is an Overiapped Command. An
Overlapped Command is a command that allows execution of
subsequent commands while the device operations initiated by
the Overlapped Command are still in progress. For more
information, refer to the *OPC and *WAI commands in the
chapter "Common Commands."

Command Syntax: :STOP

Example: OUTPUT 004 STOP"

Mainframe Commands
6-26

SYSTem Subsystem 7

Introduction SYSTem subsystem commands control functions that are common to all
modules, including formatting query responses and enabling reading and
writing to the advisory line of the instrument. Refer to figure 7-1 for the
System Subsystem commands syntax diagram.

. space l——[block_doto |—Pj
e (5a%) .

= ERROr? I -
; spaoce I——(NUMer ic
\ space E =/STRJng
—{ HEADer } —[space } —‘fOFF!e} -
G
e HE ADer?
= LONGfOrm) ‘JI space } {OFFIO\ -
! LONGf-:rm”j

Y A

Figure 7-1. System Subsystem Commands Syntax Diagram

System Subsystem
7-1

Y

PRINL?

space

T CTD

Wenel

block_dota

S

- SETup? }

165@0/5X04

block_data = data in IEEE 488.2 # format.
string = string of up to 68 alphanumeric characters.

Figure 7-1. System Subsystem Commands Syntax Diagram (Continued)

System Subsystem
7-2

DATA

Command Syntax:
Query Syntax:
Returned Format:

Definition of Block
Data

where:

<length >

DATA

command/query

The DATA command transmits the data part of the setup configuration
of the selected module in block data format. The DATA query returns
the current contents of the acquisition buffer from the selected module to
the controller,

Note

The DATA command is only used in conjunction with modules
that are loaded in the mainframe. The System does not contain
any acquired data.

:8YSTem:DATA <block data in # format>
:8YSTerm:DATA?
[:8YSTem:DATA} <block data in # format> < NL >

Biock data in the # format is made up of a block length specifier and a
variable number of sections.

< block length specifier > < section 1> <section 2>

The block length specifier is defined as follows:

#8 < length >

1= the total length of all sections in byte format {must be represented with 8 digits)

System Subsystem
7-3

DATA
I

For example, if the total length of the block (all the sections) is 144 bytes,
the block length specifier would be "#800000144" since the length must be
represented with 8 digits.

Sections consist of a section header followed by the section data as follows:

< gection header > < section data >

where:

<section header> = 10 bytes for the section name
1 byte reserved (always 0}
1 byte for the module iD number {see table 7-1)
4 bytes for the length of the section data in bytes

The section data format varies for each section and may be any length.

Note

The total length of a section is 16 (for the section header) pius
the length of the section data. Thus, when calculating the length
of a block of configuration data, care should be taken to not
forget 1o add the length of the section headers.

0 DIM Biock$[32000] lallocate enough memory for block data
DIM Specifier$[2]

OUTPUT XxXX;*:EQI ON"

OUTPUT XXX SYSTEM:HEAD OFF"

OUTPUT XX SELECT 4" !select module

OUTPUT X0 SYSTEM:DATA?" !send data query

ENTER XXX USING “#,2A* Specifier$ 'read in #8

ENTER X0(X USING "# 8D*:Biockiength Iread in block length
90 ENTER XXX USING "-K";Block$ lread in data

100 END

HP-IB Exampie:

y

8388888

System Subsystem
7-4

DATA

R
Table 7-1. Card Identification Numbers
ID Number Card
31 HP 16510A Logic Analyzer Card
1 HP 16515A 1 GHz Timing Master Card
2 HP 16516A 1 GHz Timing Expansion Card
21 HP 16520A Pattern Generator Master Card
22 HP 16521A Pattern Generator Expansion Card
11 HP 16530A Oscilloscope Timebase Card
12 HP 16531A Oscilloscope Acquisition Card

System Subsystem

7-5

DSP

DSP

Command Syntax:

where:

< string >

Example:

System Subsystem
7-6

(Display) command

The DSP command writes the specified quoted string to a device
dependent portion of the instrument display.

:8YSTerm:DSP <string >

i = string of up to 68 alphanumeric characters

OUTPUT X00(*:SYSTEM:DSP The message goes herg™

ERRor

Query Syntax:

Returned Formats:

where:

< @rfor nurmber >

ERRor

query

The ERRor query returns the oldest error from the error quene. The
opticnal parameter determines whether the error string should be
returned along with the error number. If no parameter is received, or if
the parameter is NUM, then only the error number is returned. If the
value of the parameter is STRing, then the error should be returned in the
following form:

< error number >, < rror message (string) >

A complete list of error messages for the HP 16500A mainframe is shown
in appendix C. If no errors are present in the error queue, a zero (No
Error) is returned.

:8YSTerm:ERRor? [NUMeric | STRing)

Numeric:

{:SYSTem:ERRor] <error number> <NL>

String:

[:8YSTem:ERRor] <error number >, < string> <NL >

;1= integer

System Subsystem
7-7

ERRor

Examples:

System Subsystem
7-8

Numeric:

10 QUTPUT X0C(*: SYSTEM: ERROR?"
20 ENTER X0 Numeric

30 PRINT Nurneric

40 END

String:

10 DIM $tring${100]

20 QUTPUT XXX;":SYST.ERR? STRING"
30 ENTER XXX;String$

4D PRINT String$

50 END

HEADer

Command Syntax:
Example:

Query Command:
Returned Format:

Example:

HEADer

command/query

The HEADer command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query
responses will include the command header.

The HEADer query returns the current state of the HEADer command.
:8YSTemn:HEADer {{ON|1}[{OFF}0}}

QUTPUT)OOQ':SYSTEM:HEADER ON*

:8YSTerm:HEADer?

[:SYSTem:HEADer] {1]0} <NL>

16 DIM Mode$[100]

20 QUTPUT 3004 SYSTEM:HEADER?"
30 ENTER X00GMode$

40 PRINT Mode$

50 END

Note

Headers should be furned off when returning values to numeric
variables.

System Subsystem
7-9

LONGform

LONGform

Command Syntax:
Exampie:

Query Syntax:
Returned Format:

Example:

System Subsystem
7-10

command/query

The LONGform command sets the longform variable which tells the
instrument how to format query responses. If the LONGform command
is set to OFF, command headers and alpha arguments are sent from the
instrument in the abbreviated form. If the the LONGform command is set
to ON, the whole word will be output.- This command has no affect on the
input data messages to the instrument. Headers and arguments may be
input in either the longform or shortform regardless of how the
LONGform command is set. The query returns the status of the
LONGform command.

:8YSTerm:LONGform {{ON|1} | {OFF|0}}
OUTPUT X" : SYSTEM:LONGFORM ON*
:8YSTem:LONGform?
[:SYSTem:LONGtorm] {1|0} < NL>

10 DIM Mode$[100]

20 QUTPUT X00(™ SYSTEM:LONGFORM?"
30 ENTER X0 Mode$

40 PRINT Mode$

S50 END

PRINt

PRINt _ command/query

The PRINt command initiates a print of the screen or listing buffer over
the current PRINTER communication interface. The query sends the
screen or listing buffer data over the current CONTROLLER
communication interface.

Note

The print query should NOT be sent in conjunction with any
other command or query on the same command line.

The print query never returns a header. Also, since response data
from a print query may be sent directly to a printer without
modification, the data is not returned in block mode.

Command Syntax: :SYSTem:PRINt {SCReen|ALL}

Example: OUTPUT X0G SYSTEM:PRINT SCREEN"

System Subsystem
7-11

PRINt

Query Symtax: SYSTern:PRINt? {SCReen |ALL}

Note

PRINT? ALL is only available in menus that have the "Print Ail"
option availabie on the front panel. For more information, refer
to the individual front-panel manuals for each module.

HP-IB Example: 10 OUTPUT 707;SYSTEM:PRINT? SCREEN"
20 SEND 7;UNT UNL
30 SEND 7;LISTEN 1
40 SEND 7;TALK 7
50 SEND 7;DATA idrop ATN line
60 PRINT "WAITING FOR PRINT
70 END

System Subsystem
7-12

SETup

Command Syntax:
Query Syntax:
Returned Format:

Definition of Block
Data

where:

<length >

SETup

command/query

The SETup command configures the selected moduie (or System) as
defined by the block of data sent by the controller. The query returns a
block of data that contains the current configuration for the selected
module (or System) to the controller.

:8YSTem:SETup < block data in # format>
:SYSTemn:SETup?
[:8YSTem:SETup] < biock data in # format> <NL=>

Block data in the # format is made up of a block length specifier and a
variable number of sections.

< block length specifier > < section 1> <section 2>
The block length specifier is defined as follows:

#8<length>

= the total length of all seotions in byte format {must be represented with 8 digits)

For example, if the total length of the block {all the sections) is 144 bytes,
the block length specifier would be "#800000144" since the length must be
represented with 8 digits.

System Subsystem
7-13

SETup
L

Sections consist of a section header followed by the section data as follows:

<section header > < section data >

where:

<gection header> = 10 bytes for the section name
1 byte reserved (always 0)
1 byte for the module ID number (see table 7-2)
4 bytes for the iength of the section data in bytes

The section data format varies for each section and may be any length,

Note

The total length of a section is 16 (for the section header) plus
the length of the section data. Thus, when caiculating the length
of a block of configuration setup data, care should be taken to
not forget to add the length of the section headers.

HP-IB Example: 10 DIM Block$[32000] lallocate enough memory for block data
20 DIM Specifier$[2]
30 OUTPUT XK EQI ON*
40 QUTPUT X(X;*:SYSTEM:HEAD OFF"
50 QUTPUT XXX “SELECT 0 !select System
60 OUTPUT XOX{mSYSTEM:SETUP?" !send setup query
70 ENTER X00(USING "#,2A" Specifier$ 'read in #8
80 ENTER XO{ USING "#,8D";Blocklength !read in block length
80 ENTER XXX USING "-K";Block$ iread in data
100 END

System Subsystem
7-14

SETup

Table 7-2. Card Identification Numbers

ID Number Card
31 HP 16510A Logic Analyzer Card
1 HP 16515A 1 GHz Timing Master Card
2 HP 16516A 1 GHz Timing Expansion Card
21 HP 16520A Pattern Generator Master Card
22 HP 16521A Pattern Generator Expansion Card
11 HP 16530A Oscilloscope Timebase Card
12 HP 16531A Oscilloscope Acquisition Card

System Subsystem

7-15

MMEMory Subsystem 8
L |

Introduction MMEMory (mass memory) subsystem commands provide access to both
internal disc drives. Refer to figure 8-1 for the MMEMory Subsystem

commands syntax diagram.

Note

<msus > refers to the mass storage unit specifier. INTernall
specifies the front disc drive and INTemnal0 specifies the rear disc
drive.

If you are not going to store information to the configuration
disc, or if the disc you are using contains information you need,
it is advisable to write protect your disc. This will protect the
contents of the disc from accidental damage due to incorrect
commands, elc.

@ —
i [
——@ . L { AUTc lood —]I space ;——COFFe\ 3 -
— 1
auto_file 1‘
.; Lﬁ—.— msus k—'
LT
e AUToiood?
| —
|
oo
L CATalog? -
| = L i

|

| r |
= space H msus }—J |
‘ A

;

'

Figure 8-1. Mmemory Subsystem Commands Syntax Diagram

Mmemory Subsystem
8-1

-
Oz

*——.{:)——inome%— -

,
;ﬁ[space msus ‘E—/

DOWN |l oad m " name
—
msus

Lﬁ block_data | -

e INITiclize } -

—-—@ o snace —e= name H
i

{ . CONF i g J H

i

D et

—»@»——@-———(IASSemDIeD—-l space H io_numef—j
|
= ¢

L)
|
|
|

: -{1]2) -
{ l P — I b
H 3 L . . i - |
H W el msus — y e module }
T '
—ee{ M3T } i
N [1
: = spgce 8 mius
P msu !
i
—— MSI7 —-
S ot k

Figure 8-1. Mmemory Subsystem Commands Syntax Diagram (Continued)

Mmemory Subsystem

8-2

Y

P py

nome

i
msus
(e ez b e - |
Do

CONFig

(

;h| description }—

! space }_—‘{ name |

\—'\‘UPLnad?)

auto_file = string of up to 10 alphanun
msus = INTemnall{INTemal
name = string of up to 10 alphanumeric characters.

165¢8/5x08

T meneters.

description = string of up to 32 alphanumeric characters.

type = integer, refer to table 8-1.
block_data = data in IEEE 488.2 # format.
ia_name = siring of up to 10 alphanumeric characters.

new_name = string of up to 10 alphanumeric characters.

module = integer, 1o 3.

Figure §-1. Mmemory Subsystem Commands Syntax Diagram (Continued)

Mmemory Subsystent
8-3

AUToload

AUToload

Command Syntax:

where:

<auto_file >
<msus >

Examples:

Query Command:
Returned Format:

Example:

Mmemory Subsystem

84

command/query

The AUToload command controls the autoload feature whick designates
a set of configuration files to be loaded automatically the next time the
instrument is turned on. The OFF parameter (or 0} disables the autoload
feature. A string parameter may be specified instead to represent the
desired autoload file. If the file is on the current < msus >, the autoload
feature is enabled to the specified file.

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload file. The appropriate slot designator " X" is
included in the filename. "X" refers to the slot designator A...E for the
corresponding module. If the slot designator is "_?" the file is for all
moedules.

:MMEMory:AUToload {{OFF}0} | { <auto_file>}}H, <msus>]

i = string of up to 10 alphanurmeric characters
= {IiNTernal1{INTernal0}

OUTPUT XXX;": MMEMORY:AUTOLOAD OFF”
QUTPUT 300¢": MMEMORY:AUTOLOAD ‘FILE1_A™
QUTPUT X" :MMEMORY:AUTOLOAD 'FILE2_ _",INTERNAL1"

‘MMEMory:AUToload?
[:MMEMory:AUToload] {0 <auto_file>}, <msus> <NL>

10 DIM Auto_statusS[100]

20 QUTPUT X0¢"MMEMORY:AUTOLOAD?"
30 ENTER XXX;Auto_status$

40 PRINT Auto_status$

50 END

CATalog

Query Syntax:

where:

< MSUs >

Returned Format:

where:

< biock data >

CATang_

query

The CATalog query returns the directory of the currently selected disc in
block data format. The directory consists of a 51 character string for each
file on the disc. Each file entry is formatted as follows:

*NNNNNNNNNN TTTTTTT DDDDDDDDODDDDDDDDDDEDODDDDDDDDDDDD

where N is the filename, T is the file type (a number), and D is the file
descriptor. If the <msus> is not specified, the last disc drive specified by
the MSI command will be vsed.

For more information on block data format, refer to the section
"Definite-Length Block Response Data” in the chapter 1.

:MMEMory:CATalog? [<msus >]

1= {INTernal1|INTernal(}

[:MMEMory:CATalog] <block data >

= <filename > <file type > <file description> ...

Mmemory Subsystem
8-5

CATalog

Example:

Mmemory Subsystem
8-6

10 DIM File$([51]

20 DIM Specifier$[2]

30 QUTPUT X00¢":SYSTEM:HEAD OFF

40 OUTPUT X004 MMEMORY:CATALOG? INTERNAL1" !send catalog query
50 ENTER XX USING "#,2A% Specifier$ lread in #8

60 ENTER X0{ USING “#,8D" Length lread in length

70 FOR =1 TQ Length STEP 51 lread and print each file in the directory
BO ENTERJOXX USING "#,51A%File$

90 PRINT File$

100 NEXT |

110 ENTER 00(USING *A";Specifier$!read in final fine feed

120 END

CcoPY

COPY command

The COPY command copies one file to a new file or an entire disc’s
contents to another disc. The two <name > parameters are the
filenames. The first pair of parameters specifies the source file. The
second pair specifies the destination file. An error is generated if the
source file doesn’t exist, or if the destination file already exists.

If the filename is not specified for both the source and destination, then
the entire contents of the source are transferred to the destination (same
as the Duplicate Disc front panel operation). The previous contents of
the destination media are destroyed.

If the < msus> is not specified, the last disc drive specified by the MSI
command will be used.

Command Syntax: :MMEMory:COPY [<name >][, <msus>],[<name >][, < msus >]

where:
<name> = string of up to 10 alphanumeric characters
<msus> 1= {INTernall [INTernal0}

Mmemory Subsystem
8-7

COPY

Examples:

Mmemory Subsystem
8-8

To copy the contents of "FILE1" to "FILE2" when both files arc on a disc
on the last disc drive specified by the MSI command:

OUTPUT X004 MMEMORY:COPY 'FILE1"'FILE2™

To copy the contents of "FILE1" on the rear disc drive to "FILE2" on the
front disc drive:

OUTPUT XXX:*:MMEM: COPY ‘FILE1' INTERNALD, FILE2', INTERNAL 1"

To copy the contents of "FILE1" on the last disc drive specified by the
MSI command to "FILE2" on the rear disc drive:

OUTPUT 300G MMEMORY:COPY "FILE1 ',‘FILE2',IN'TERNALO“

To duplicate the contents of the disc in the rear disc drive to a disc in the
front disc drive:

OUTPUT X04“MMEM:COPY INTERNALO,INTERNAL1"

DOWNIoad

I
DOWNIload command

The DOWNIload command downloads a file to the specified mass storage
device. The < name> parameter specifies the filename, the

< description > parameter specifies the file descriptor, and the
<block_data> contains the contents of the file to be downloaded.

If the < msus > is not specified, the last disc drive specified by the MSI
command will be used.

Table 8-1 lists the file types for the <type> parameter.

Command Syntax: :MMEMory:DOWNIoad < name > {, < msus >], <deseription >, <type >, <block_data >

where:
<name> = string of up to 10 alphanurmeric characters
<Msus > = {INTernal0)|INTernal1}
< description > = string of up to 32 alphanumeric characters
<type> = integer (see table 8-1)
<block_data> : = contents of file in block data format

Example: OUTPUT x00¢":MMEMORY: DOWNLOAD 'SETUP__',INTERNALD, FILE CREATED
FROM SETUP QUERY',-16127 #800000643..."

Mumemory Subsystem
8-9

DOWNIoad

|
Table 8-1. File Types
File File Type
HP 16500A System Software -16128
HP 16500A Mainframe (System) Configuration -16127
HP 16510A Logic Analyzer Configuration -16096
HP 16515A 1 GHz Timing Configuration -16126
HP 16520A Pattern Generator Configuration -16106
HP 16530A Oscilloscope Configuration -16116
Autoload File -15615
Inverse Assembler -15614
Option Software -15613
Calibration Factors -15611
Text (Generic) Type -15610

Mmemory Subsystem

8-10

INITialize

Command Syntax:

where:

< MS$us >

Examples:

INITialize

command

The INITialize command formats the specified disc. If no disc drive is
specified, then the initialize command will format the disc in the currently
seiected disc drive. '

:MMEMory:INITialize [<msus>]

1= {INTernal0|INTernal1}

QUTPUT X0 :MMEMORY: INITIALIZE"
OUTPUT X0 MMEMORY:INITIALIZE INTERNALD"

Note

Once executed, the initialize command formats the specified
disc, permanently erasing all existing information from the disc.
After that, there is no way to retrieve the original information.

Mmemory Subsystem
8-11

LOAD

LOAD

Commangd Syntax:

where:

<nRame>
< Mmsus >
<module >

Examples:

Mmemeory Subsystem
8-12

[:CONFig] command

The LOAD command loads a configuration file from the disc into
modules, software options, or the system. The <name > parameter
specifies the filename from the specified mass storage device. The
optional < module > parameter specifies which module(s} to load the file
into. The accepted values are 0 for system, 1...5 for the module in slot
A E respectively, and -1...-2 for software options 1 and 2 respectively.
Not specifying the < module > parameter is equivalent to performing a
'LOAD ALL’ from the front panel which loads the appropriate file for
every installed module, software option, and for the system.

:MMEMory:LOAD[:CONfig] <name > [, <msus >][, <module >]

2= string of up to 10 alphanumeric characters
= {INTernai0|INTernalt}
1= -2 through 5 (integer)

QUTPUT XX ":MMEMORY:LOAD:CONFIG 'FILE__ ™
OUTPUT XX :MMEMORY:LOAD FILE_ 0"
OUTPUT XXX;*: MMEM:LOAD:CONFIG "FILE_A"INTERNAL1,1"

LOAD

T
LOAD :IASSembler command

This variation of the LOAD command allows inverse assembier files to be
loaded into a module that performs state analysis. The <IA_name >
parameter specifies the inverse assembler filename from the desired

< msus >. The parameter after the optional < msus > specifies which
machine to load the inverse assembier into.

The optional < module > parameter is used to specify which slot the state
analysis module is in. 1...5 refers to the module in slot A..E. If this
parameter is not specified, the state analysis module closest to slot A is
selected.

Command Syntax: :MMEMory:LOAD:IASSembler <IA_name >{, <msus>],{1}2}[,<module>]

where:
<lA_name> = string of up to 10 alphanumeric characters
<msus > = {INTernal0|INTernal1}
< module > = 1 through 5 (integer)

Examples: OUTPUT XXX;MMEMORY:LOAD:IASSEMBLER "168020_IP',1"
QUTPUT XXX;":MMEM:LOAD:IASS '168020_{P' INTERNAL1,1,2"

Mmemory Subsystem
8-13

MSI

MSI

Command Syntax:

where:

<msus>

Examples:

Query Syntax:
Returned Format:

Example:

Mmemory Subsystem
8-14

(Mass Storage Is) command/query

The MSI command selects a default mass storage device. If the
parameter is omitted, the default mass storage device (front disc drive) is
selected. The query returns the current MSI setting,

:MMEMory:MSI [< msus >)

i = {INTemal0|INTernali}

QUTPUT 004 ":MMEMORY:MSI*
QUTPUT 200 MMEM:MS| INTERNAL 1"

:MMEMory:MSi?
[:MMEMory:MSI] <msus > <NL>

10 DIM Device$[100]

20 OUTPUT X004 MMEMORY:MSI?*
30 ENTER XXX; Device$

40 PRINT Device$

50 END

PACK

PACK command

The PACK command packs the files or a disc on the specified mass
storage device. If no disc drive is specified, this command will pack the
disc in the last disc drive specified by the MSI command.

Command Syntax: :MMEMory:PACK [<msus>]

where:

<msus> = {INTernalQ|INTernal1}

Exampies: OUTPUT XX0¢":MMEMORY:PACK"
OUTPUT X04*: MMEM:PACK INTERNAL1*

Mmemory Subsystem
8-15

PURGe

PURGe command

The PURGe command deletes a file from the specified mass storage
device. The <name > parameter specifies the filename to be deieted.

Command Syntax: :MMEMory:PURGe <name>] <msus:]

where:
<name> ;= string of up to 10 alphanumeric characters
<msus> = {INTemal0|INTernal1}

Examples: OUTPUT XxXX;"MMEMORY:PURGE 'FILE1"
OUTPUT 3004 MMEM:PURG 'FILE1',INTERNALO"

Note

Once executed, the purge command permanently erases all the

existing information from the specified file. After that, there is no
way to retrieve the original information.

Mmemory Subsystem
8-16

REName

I
REName command

The REName command renames a file from the specified mass storage
device. The <name > parameter specifies the filename to be changed
and the <new_name > parameter specifies the new filename.

Note

You cannot rename a file to an aiready existing filename.

Command Syntax: :MMEMory:REName <name >[, <msus>],<new_name >

where:
<name> = string of up to 10 alphanumeric characters
<msus> = {INTernalQ|INTernal1}

<new_name >

string of up to 10 alphanumeric characters

Examples: OUTPUT Xx%*:MMEMORY: RENAME 'OLDFILE’, 'NEWFILE"™
OUTPUT XXX;":MMEM:REN 'OLDFILE',INTERNAL 1, 'NEWFILE™

Mmemory Subsystem
B-17

STORe

STORe

Command Syntax:

where:

< name>
<msus >

< description >
<module >

Exampies:

Mmemeory Subsystem
8-18

[:CONFig] command

The STORe command stores module or system configurations onto a disc.
The [:CONFig] specifier is optional and has no effect on the command.
The <name> parameter specifies the file on the specified mass storage
device. The <description> parameter describes the contents of the file.
The optional < module > parameter allows you to store the configuration
for a specific module or modules. 1...5 refers to the module in slot A..E
and O refers to the system. -1 and -2 are for software options.

If the optional < module> parameter is not specified, the configurations
for all of the modules are stored.

:MMEMory: STORe [:CONfig] < name > [, < msus >], < description > [, <module >]

string of up to 10 alphanumeric characters
{INTernal0|INTemnal1}

;:= string of up to 32 alphanumeric characiers
n= -2 through & {integer)

]

OUTPUT XX MMEM:STOR 'DEFAULTS',"SETUPS FOR ALL MODULES™
OUTPUT X0 MMEMORY:STORE:CONFIG "SCOPE’,INTERNAL1,'SLOT B SCOPE
CONFIG",2"

Note

The appropriate siot designator " X" is added to all files when
they are stored. "X" refers to the letier A...E of the corresponding
slot for each module.

UPLoad

UPLoad query

The UPLoad query uploads a file. The <name > parameter specifies the
file to be uploaded from the specified mass storage device. The contents
of the file are sent out of the instrument in block data form.

Note

This command should only be used for HP 165XX or HP 165X
files.

Query Syntax: :MMEMory:UPLoad? <name>[, <msus>]

where:

<name> .= string of up to 10 alphanumeric characters
<msus> 1= {INTernalQ|INTernal1}

Returned Format: [:MMEMory:UPLoad] <block_data> <NL>

HP-IB Example: 10 DIM Block$[32000] tallocate enough memory for block data
20 DIM Specifier$[2]
30 OUTPUT X00("EQF ON*
40 QUTPUT XXX;*:SYSTEM HEAD OFF"
50 OUTPUT 300G MMEMORY:UPLOAD? "FILE1'INTERNAL1" !'send upload query
60 ENTER XXX USING "#,2A% Specifier !read in #8
70 ENTER XX USING "#,8D";Length lread in biock length
B0 ENTER XXX USING "-K*;Block$ 'read in file
90 END

Mmentory Subsystem
8-19

INTermodule Subsystem 9

introduction INTermodule subsystem commands specify intermodule arming between
multiple modules. Refer to figure 9-1 for the INTermodule Subsystem
commands syntax diagram.

O
Lot

;
oELet_e>——{ space | ALL
(our)
[rodule
S

e HT IMe?

4

Civiermen D=0

INPort space CFFle 4 o

—m={ TNFort? } o

f f I
—b‘ﬁlNSen}——w‘ spoce }v_l_ﬂ madyle r——C}T—@T>

|

out modu | ¢
y) odu

Figure 9-1. Intermodule Subsystem Commands Syntax Diagram

Intermodule Subsystem
91

/ 1
H@————(ingex H space |—-—!_setting }—.
'

o TTIMe? } _/

16508 /5X85

module = integer, 1to 5.
index = integer, 1to0 5.
setting = numeric, -1.0 to 1.0 in seconds.

Figure 9-1. Intermodule Subsystem Commands Syntax Diagram (Continued)

Intermodule Subsystem
9.2

DELete

]
DELete command

The DELete command is used to delete a modaule, group of modules,
PORT OUT, or an entire intermodule tree. The < module > parameter
sent with the delete command refers to the slot location of the module
(1...5 corresponds to the module in slot A...E).

Command Syntax: :INTermodule:DELete {ALL|OUT| <module >}

where:

<module> ;= 1through 5 (integer)

Example: OUTPUT X" INTERMODULE: DELETE ALL"
OUTPUT X% INT:DEL 2

Intermodule Subsystem
9-3

HTiMe

HTiMe

Query Syntax:

Returned Format;

where:

<value_1>
<value_2>
<value_3>
<value_4 >
<value_5>

Examples:

Intermodule Subsystem
9-4

query

The HTIMe query returns five values representing the internal hardware
skew for all of the modules in the Intermodule configuration. The first
value is the skew for the module in slot A, the second value is for the
module in slot B, the third value is for slot C, etc. If there is no internal
skew, 9.9E37 is returned.

Note

The intemal hardware skew is only a display adjustment for time
correlated waveforms. The values returned are the average
propagation delays of the trigger lines through the intermodule
bus circuitry for each module. These values are for reference
only because the values retumned by TTIMe include the intemal
hardware skew represented by HTIMe.

[INTermecduie:HTIMa?

[:INTermodute:HTIMe]
<value_1>,<value_2>,<value_3>, <value_4>,<value_ 5> <NL>

skew for module in slot A (real number)
skew for module in slot B {real number)
skew for module in slot G (real number)
skew tor module in siot D (real number)
skew for module in siot E (real number)

10 DIM Setting$[100]
20 QUTPUT X0 INTERMODULE:HTIME?"
30 ENTER XXX Setting$

40 PRINT Setting$

50 END

INPort

Command Syntax:
Example:

Query Syntax:
Returned Format:

Exampies:

INPort

command/query

The INPort command causes Intermodule runs to be armed from the
Input port. The INPort query returns the current setting.

:INTermodule:INPort {{ON)1}}{OFF|0}}
OUTPUT XX INTERMODULE:INPORT ON"
INTermodule:INPort?

[:INTermodule:INPort] {10} <NL>

10 DIM Setting$[100]

20 OUTPUT XXX;"INTERMODULE:INPORT?*
30 ENTER XXX; Setting$

40 PRINT Setting$

50 END

Intermodule Subsystem
9-5

INSert

INSert command

The INSert command adds a module or PORT OUT to the Intermodule
configuration. The first parameter sclects the module or PORT OUT to
be added to the intermodule configuration, and the second parameter
tells the instrument where the module or PORT OUT will be located.
1...5 corresponds to the slot location of the module A...E.

Command Syntax: :INTermodule:INSert { <module > JOUT},{GROUP| <module > }

where:

<module> ::= 1through 5 (integer)

Examples: OUTPUT 00" INTERMODULE:INSERT 1,GROUP
QUTPUT 300G INT:INSERT 2,GROUP*
OUTPUT 300CINTERMODULE:INS 3,2;INS OUT,2*

The following figure shows the result of the example output commands:

[Group Run

Fe S

Intermodule Subsystem
9-6

SKEW<N>

Command Syntax:

where:

<N>
<setting >

Example:

Query Syntax;

Returned Format:

Example:

SKEW<N>

command/query

The SKEW command sets the skew value for a module. The query
returns the user defined skew setting. The <N > index value is the
module number (1...5 corresponds to modules A...E respectively) and the
<setting > parameter is the skew setting (-1.0 to 1.0) in seconds.

:INTermodule: SKEW < N> <sgatting >

1= 1through 5 (integer)
= -1.0 to 1.0 seconds (reaf number)

OUTPUT XXX*:INTERMODULE: SKEW?2 3.0E-¢"
(INTermodule: SKEW < N> 7
[INTermodule: SKEW< N>] <setting> <NL>

10 DIM Setting${100]

20 QUTPUT 00" INTERMODULE: SKEW27"
30 ENTER XXX; Setting$

40 PRINT Setting$

50 END

Intermodule Subsystem
9-7

TREE

TREE

Command Syntax:

where;

<module >

Example:

Intermodule Subsystem

9-8

command/query

The TREE command allows an intermodule setup to be specified in one
command. The query returns a string that represents the intermodule
tree. A -1 means the module is not in the intermodule tree, a 0 value
means the module is armed from the Intermodule run button (Group
run), and a positive value indicates the moduie is being armed by another
module with that slot location (1...5 corresponds to the module in slot
A..E, respectively).

The first five parameters are the intermodule arm values for modules A
through E respectively. The last parameter corresponds to the
intermodule arm value for PORT OUT.

:INTermodule: TREE

<module >, < module >, <module >, <module >, <module >, <module >
= -1 through 5 (integer)

QUTPUT XXX, *:INTERMODULE:TREE 0,0,.2,-1,-1,2

The following figure shows the result of the example output commands:

i Group Run
|
A B |
i C ! EOUT!

TREE

Query Symtax: :INTermodule: TREE?

Returned Format: [INTermodule: TREE]
<module >, <module >, <module >, < module >, <module >, <module > <NL >

Example: 10 DIM Config$[100]
20 OUTPUT X0XX;*INTERMODULE: TREE?
30 ENTER XXX:Config$
40 PRINT Config$
50 END

Intermodule Subsystem
99

TTIMe

TTiMe query

The TTIMe query returns five values representing the absolute
intermodule trigger times for all of the modules in the Intermodule
configuration. The first value is the trigger time for the module in slot A,
the second value is for the module in slot B, the third value is for slot C,
etc.

The value 9.9E37 is returned when:

e No module is installed in the corresponding slot;
e The module in the corresponding slot is not time correlated; or
e A time correlatable module did not trigger.

Note

The trigger times returned by this command have already been
offset by the INTermodule:SKEW values and internal hardware
skews (INTermodule:HTIMe).

Query Syntax: :iNTermodule:TTIMe?

Returned Format: [;INTermodule: TTIMe]
<value_1>, <value_2>,<value_3>,<value_4>, <value_5> <NL>

where:
<value_1> := trigger time for module in slot A {real number)
<value_ 2> 1= trigger time for module in slot B (real number)
<value 3> @ = trigger time for module in siot C {real number)
<value_4> ;1= trigger time for module in slot D (reat number)
<value 5> 1= trigger time for module in slot E (real number}

Intermodule Subsystem
9-10

]
Examples:

TTiMe

10 DIM Setting$[100]

20 OUTPUT X0¢INTERMODULE: TTIME?"
30 ENTER >00¢; Setting$

40 PRINT Setting$

50 END

Intermodule Subsystem
9-11

Message Communication A
and System Functions

introduction

This appendix describes the operation of instruments that operate in
compliance with the IEEE 488.2 (syntax) standard. The IEEE 488.2
standard is a new standard. Instruments that are compatible with IEEE
488.2 must aiso be compatible with IEEE 488.1 (HP-IB bus standard);
however, IEEE 488.1 compatibie instruments may or may not conform to
the IEEE 488.2 standard. The IEEE 4882 standard defines the message
exchange protocols by which the instrument and the controller will
communicate. It also defines some common capabilitics, which are found
in all IEEE 488.2 instruments. This appendix also contains a few items
which are not specifically defined by IEEE 488.2, but deal with message
communication or system functions.

Note

The syntax and protocol for R§-232C program messages and
response messages for the HP 165004 are structured very similiar
to those described by 488.2. In most cases, the same structure
shown in this appendix for 485.2 will also work for RS-232C.
Because of this, no additional information has been included for
R5-232C.

Also, the commaon commands listed in the chapter "Common
Commands” may be sent over both HP-IB and RS-232C.

Message Communication and System Functions
A-l

Protocols The protocols of IEEE 488.2 define the overall scheme used by the
controller and the instrument to communicate. This includes defining
when it is appropriate for devices to talk or listen, and what happens when
the protocol is not-followed.

Functional Elements Before proceeding with the description of the protocol, a few system
components should be understood.

Input Buffer. The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Output Quene. The output queuve of the instrument is the memory area
where all output data (< response messages >) are stored until read by
the controller.

Parser. The instrument’s parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. "Parsing" refers to the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
instrument sees a < program message terminator > (defined later in this
appendix) or the input buffer becomes full. If you wish to send a long
sequence of commands to be executed and then talk to another
instrument while they are executing, you should send all the commands
before sending the < program message terminator >,

Message Communication and System Functions
A-2

Protocol Overview

Protocol Operation

The instrument and controller communicate using < program message >s
and <response message >s. These messages serve as the containers into
which sets of program commands or instrument responses are placed.

< program message > § are sent by the controller to the instrument, and

< response message > s are sent from the instrument to the controller in
response to a query message. A < query message > is defined as being a
< program message > which contains one or more queries. The
instrument will only talk when it has received a valid query message, and
therefore has something to say. The controller should only attempt to
read a response after sending a complete query message, but before
sending another < program message>>. The basic rule to remember is
that the instrument will only talk when prompted to, and it then expects to
talk before being told to do something else.

When the instrument is turned on or when it receives a device clear
command, the input buffer and output queue are cleared, and the parser
is reset to the root level of the command tree.

Note

When the instrument receives a device clear command, the
module (or system) selected prior to the command remains
selected.

The instrument and the controller communicate by exchanging complete
< program message >s and < response message >s. This means that the
controller should always terminate a < program message > before
attempting to read a response. The instrument will terminate < response
message > s except during a hardcopy output,

If a query message is sent, the next message passing over the bus should
be the <response message >. The controller should always read the
complete <response message > associated with a gquery message before
sending another < program message > to the same instrument.

The instrument aliows the controller to send multiple queries in one query
message. This is referred to as sending a "compound query.” As will be
noted later in this appendix, multiple queries in a query message are
separated by semicolens. The responses to each of the queriesin a
compound query will also be separated by semicolons.

Message Communication and System Functions
A3

Protocol Exceptions

Commands are executed in the order they are received. This also applies
to the reception of the HP-IB group execute trigger (GET) bus command.
The group execute trigger command should not be sent in the middle of a
< program message > .

If an error occurs during the information exchange, the exchange may not
be completed in a normal manner. Some of the protocol exceptions are
shown below.

Addressed to talk with nothing to say. If the instrument is addressed to
talk before it receives a query, it will indicate a query error and will not
send any bytes over the bus. If the instrument has nothing to say because
queries requested were unable to be executed because of some error, the
device will not indicate a query error, but will simply wait to receive the
next message from the controlier.

Addressed to talk with no listeners on the bus. If the instrument is
addressed to talk and there are no listeners on the bus, the instrument will
wait for a listener to listen, or for the controller to take control.

Command Error. A command error will be reported if the instrument
detects a syntax error or an unrecognized command header. An HP-IB
group execute trigger (GET) sent in the middie of a < program
message > will also cause a command error.

Execution Errer. An execution error will be reported if & parameter is
found to be out of range, or if the current settings do not allow execution
of a requested command or guery.

Device-specific Error. A device-specific error will be reported if the
instrument s unable to execute a command for a strictly device dependent
reason.

Query Error. A query error will be reported if the proper protocol for
reading a query is not followed. This includes the mterrupted and
unterminated conditions described in the following paragraphs,

Message Communication and System Functions

A4

Syntax
Diagrams

Unterminated Condition. If the controller attempts to read a < response
message > before terminating the < program message >, a query error
will be generated. The parser will reset itself, and the response will be
cleared from the output queue of the instrument without being sent over
the bus.

Interrupted Condition. If the controlier does not read the entire

< response message > generated by a query message and then attempts to
send another < program message >, the device will generate a query
error. The unread portion of the response will then be discarded by the
instrument. The interrupling < program message > will not be affected.

Buffer Deadlock. The instrument may become deadlocked if the input
buffer and output queue both become full. This condition can occur if a
very long < program message > is sent containing queries that generate a
great deal of response data. The instrument cannot accept any more
bytes, and the controller cannot read any of the response data until it has
completed sending the entire < program message >. Under this
condition the instrument will break the deadiock by clearing the output
queue, and continuing to discard responses until it comes to the end of the
current < program message >. The query error bit will also be set.

The syntax diagrams in this appendix are similar to the syntax diagrams in
the IEEE 488.2 specification. Commands and queries are sent to the
instrument as a sequence of data bytes. The allowable byte sequence for
each functional element is defined by the syntax diagram that is shown
with the element description.

The allowable byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows. If there is a path around an
element, that element is optional. If there is a path from right to left
around one or more ¢lements, that element or those elements may be
repeated as many times as desired.

Message Communication and System Functions
A-5

Syntax This overview is intended to give a quick glance at the syntax defined by

Overview IEEE 488.2. It should allow you to understand many of the things about
the syntax you need to know. This appendix also contains the details of
the TEEE 488.2 defined syntax.

IEEE 488.2 defines the blocks used to build messages which are sent to
the instrument. A whole string of commands can therefore be broken up
into individual components.

Figure A-1 shows a breakdown of an example < program message > .
There are a few key items to notice:

1. A semicolon separates commands from one ancther. Each < program
message unit > serves as a container for one command. The < program
message unit > s are separated by a semicolon.

2. A < program message > is terminated by a <NL > (new line) , a

< NL> with EQI asserted, or EOI being asserted on the last byte of the
message. The recognition of the < program message terminator >, or

< PMT >, by the parser serves as a signal for the parser to begin

execution of commands. The < PMT > also affects command tree
traversal (see the Programming and Documentation Conventions chapter).

3. Multiple data parameters are separated by a comma.

4. The first data parameter is separated from the header with one or more
spaces.

5. The header INTERMODULE:INSERT is an example of a compound
header. It places the parser in the intermodule subsystem unti! the
-<NL > is encountered.

6. A colon preceding the command header returns you to the top of the
command tree for the selected module.

Message Communication and System Functions
A-b

:INTERMODULE: INSERT 3 ., 1 , SKEW3 3.8 ns <NL>

| T

—

<program message unit>
INTERMODULE - INSERT 3 , t

N

<command progrom heoder> <progrom header separgtor> <program dota>
INTERMODULE : INSERT IS 3,0

<white space> <white space> |<white space>

<progrom maemenic> ; <program mnemonic> <progrom datso> <program dalo seporotor> <program dato>
INTERMODULE INSERT 3 , 1
<decimal numeric program gata> <decimal numeric prograom data>
3 1

<program message unit separator>

H

SP . &P '
P T <program messoge terminator>
e 5P <NL>
/ ‘ \ <progrom message unit>
<while spoce> ., <while spoce> SHEW3 3.6 ns \

<white space> NL

/ N

<program header> <program heoader sepdrater> <program gata>
SKEW3 SP 2.8 ns

<white spacex <decime! program date> <suffix progrom doto>
& SF ns

| ™

|
<wnite spoce> <suff.x multiplier> <suffi> unit>
n s

Lo

15528/B 18

Figure A-1. <program message > Parse Tree

Message Communication and System Functions
A7

Device Listening The listening syntax of IEEE 488.2 is designed to be more forgiving than
Syntax the talking syntax. This allows greater flexibility in writing programs, as
well as allowing them to be casier to read.

Upper/Lower Case Equivalence. Upper and lower case letters are
equivalent. The mnemonic SINGLE has the same semantic meaning as
the mnemonic single.

< white space>. < white space > is defined to be one or more characters
from the ASCII set of 0 - 32 decimal, excluding 10 decimal (NL). < white
space > is used by several instrument listening components of the syntax.
It is usually optional, and can be used to increase the readability of a

program.

—
el

——
| '
l <white space é

chorgeters>

120/BL38

Figure A-2. <white space >

Message Communication and System Functions
A-8

< program message>. The < program message > is a complete message
to be sent to the instrument. The instrument will begin executing
commands once it has a complete < program message >, or when the
input buffer becomes full. The parser is also repositioned to the root of
the command tree after executing a complete < program message >.
Refer to the Tree Traversal Rules in the Programming and
Documentation Conventions chapter for more details.

<progrom
message unit
separater>

<program
message
terminator>

<program
message unit>

- 54120/BL 39

Figure A-3. <program message >

< program message unit>. The < program message unit > is the
container for individual commands within 2 < program message > .

<command message unit>

SR oy

Lﬁ- <query messoge unit>

5412078140

Figure A-4. < program message unit >

Message Communication and System Functions
A9

<commong
program
hegder>

<progrom
hegder
separator>

<preogram data
seporotor>

<program data> fF——>—@

54120/8L41

e
-

Figure A-5. < command message unit >

<guery
pragraom
header>

<program
heoder
separgtor>

<progrom dato
separator>

<pragram data>

B4120/BL42

B
L

Figure A-6. <query message unit >

Message Communication and System Functions
A-10

< program message unit separator >, A semicolon scparates < program
message unit > s, or individual commands.

———®| <white space> TO—D

54120/BL 43

Y

Figure A-7. < program message unit separator >

< command program header >/ < guery program header>. These

clements serve as the headers of commands or queries. They represent
the action to be taken.

<white spoce> o | <simple command

i/ | program header> 1
|

Y

<compound c¢ormmand
e —
progrom header>

\ I <common cammond

e
program header>

S41Z20/BL44

Figure A-8. <command program header >

Message Communication and System Functions
A-11

Where < simple command program header > is defined as

—-

<program
Mnemon i c>

.

54120/8L45

Where <compound command program header > is defined as

<program
mRemon ic>

e BN

!

Where <common command program header > is defined as

—(

<progrom
mnemcnic>

Where < program mnemonic > is defined as

<upper/lowar
case glpha>

Where <upperflower case alpha > is defined as a singl

<program
I
mneman | ¢
54120/BL45
—
54120/BL45
—alt-
<upper/lower
{ cgse alpha> |
; ==\._
| f
-
! <digtt>
!
5412048145
e ASCII encoded

byte in the range 41 - 54, 61 - 74 (65 - 90, 97 - 122 decimal).

Where <digit> is defined as a single ASCII encoded byte in the range 30 -

39 (48 - 57 decimal).

Where (_ } represents an "underscore’, a single ASClI-encoded byte with the

vaiue 5F (95 decimal).

Figure A-8. <command program header> {continued)

Message Communication and System Functions
A-12

I
——

<white spoce>

. <simple query
J pragram header> h
k. <compound query
progrem heoder> 1
S 3 LcoMmon query
progrom hecder>
34120/BL46

Where <simple query program header > is defined as

_—

<program
mnemanics

54 [2C/BLAS

—

Where <compound query program header > is defined as

<progrom
mnemon i c>

<progrom
mnemonic>

—~(

54 120/BLAE

Where < common guery program header > is defined as

._—@—.

<program
mnemonic>

N

.

34 120/BL 88

Figure 4-9. <query program header>

Message Communication and System Functions

A-13

< program data >. The < program data>> element represents the
possible types of data which may be seat to the instrument. The

HP 16500A wili accept the following data types: < character program
data>, < decimal numeric program data >, < suffix program data>,
< string program data>>, and < arbitrary block program data>.

<suffix
progrom dota>

<¢choracter
progrom date>

<decimal numeric
prograom dota>

|

<string
progrom datos

<arbitrary
bicck
regrom doto>

R

S4120/BL47

Figure A-10. <program data>

<program
— . -
Memon 1 £

54120781 48

Figure A-11. <character program data >

Message Communication and System Functions
A-14

<white

—- <mantissa> = spoces - <gxponent>
J
h > S41207BL 49
Where <mantisssa> is defined as
+ e pte catgrs e
[
- g

y

Where <optional djgzm > is defined as

24120/BLS1

Where < exponent > is defined

<white space>

3

as

Figure A-12. <decimal numeric program data >

5412G/BL49

)

<drgit>

S4120/BL5O

Message Communication and System Functions

A-15

- suffix mutbt>

T <white space>

e
-

Figure A-13. < suffix program data >

<suffix unit>
54120/BL52

Suffix Multiplier. The suffix multipliers that the instrument will accept

are shown in table A-1.

Table A-1. < suffix mult >

Value

Mnemonic

1E18
1E15
1E12
1E9
1E6
1E3
1E-3
1E-6
1E-9
1E-12
1E-15
1E-18

EX
PE

>mwzczw§ma

Suffix Unit. The suffix units that the instrument will accept are shown in

table A-2,

Table A-2. <suffix unit>

Suffix

Referenced Unit

v
S

Volt
Second

Message Communication and System Functions

A-16

4

<inserted’ >

<non—single
quote char>

Y

)

<non—double
guote char>

L P
-
54120/BL 53

Where <inserted *> is defined as a single ASCII character with the value 27
{39 decimal).

Where < non-single quote char > is defined as a single ASCII character of
any vaiue except 27 (39 decimal).

Where <inserted "> is defined as a single ASCII character with the vaiue 22
(34 decimal).

Where <non-double quote char> is defined as a single ASCII character of
any value except 22 (34 decimal)

Figure A-14. <string program data >

Message Communication and System Functions
A-17

o digit> hal

<nen—zero -

<digit>

A

L=

|

) <B-bit
@ data byte>

range 31 - 39 (49 - 57 decimal).

Where < &-bit byte > is defined as an 8-bit byte in the range 00 - FF (0 - 255

decimal).

. \ dota byte>

S4120/BL54

Where <non-zero digit > is defined as a single ASCII encoded byte in the

Figure A-15. <arbitrary block program data>

< program data separator >. A comma separates multiple data
parameters of a command from one another.

—T-"-b- <white space>
]
I

)

<white space>

[—

54120/BL55

Figure A-16. <program data separator >

Message Communication and System Functions

A-18

< program header separator>. A space separates the header from the
first or only parameter of the command.

—#= <white space>

H120/BLSE

Figure A-17. <program header separator >

< program message terminator >, The <program message terminator >

or <PMT > serves as the terminator to a complete < program
message >. When the parser sees a complete < program message > it
will begin execution of the commands within that message. The <PMT >

also resets the parser to the root of the command tree.

——#= <white space> 1 @ @
o = <N >
SA120/8L72

Where <NL > is defined as a single ASCII-enc

Figure A-18. <program message termingtor >

Message Communication and System Functions

oded byte QA (10 decimal).

A-19

s INTERMODULE : INPORT 1; : INTERMODULE : SKEW3 3. BE-9 <NL>

J

|

<response message unit> <response message unit separator>

: INTERMODULE : INPORT :

<response header> <response heoder separator> <response datoc>

: INTERMODULE : INPORT 5P 1

]

<response mnemanic> <white space>

<NR1 numeric response data>

<response mnemonic>
1

INTERMODULE INPORT

-

<response message unit> <response message terminator>
NL

. INTERMODULE : SKEW3 3.8E-9

<response hegder> <response hegder separotor> <response data>
: INTERMODULE : SKEW3 sP 3.8E-8

IR

N
<response mnemonic> <response mnemonic <white spoce> <NR3 numeric response datax
3 8E-%

INTERMODULE SKEW3
15588 /BL19

Figure A-19. <response message > Tree

Message Communication and System Functions
A-20

Device Talking Syntax The talking syntax of IEEE 488.2 is designed to be more precisc than the
listening syntax. This aliows the programmer to write routines which can
easily interpret and use the data the instrument is sending. One of the
implications of this is the absence of < white space > in the talking
formats. The instrument will not pad messages which are being sent to the
controller with spaces.

< response message >. This clement serves as a complete response from
the instrument. 1t is the result of the instrument executing and buffering
the results from a complete < program message >>. The complete
<response message > should be read before sending another < program
message > to the instrument.

<response
message unit
separgtor>

<response message
termingtor>

s <response

message unit>

1

E4120/BLS7

Figure A-20. <response message >

<response message unit >. This element serves as the container of
individual pieces of a response. Typically a < guery message unit > will
gencrate one < response message unit >, although a < query message
unit > may generate multiple <response message unit > s,

< response header>. The <response header >, when returned,
indicates what the response data represents.

Message Communication and System Functions
A-21

<simple

——— response | —

header>

<gompound
S response | E—
header>

<comman

—— - response -

header>

54120/8L58

Where <simple response mnenomic> is defined as

<response
mnemanic>

-

51120/BL.99

Where <compound response header > is defined as

<response
mnemon | >

Where <common response header> is defined as

4>®__.

<response

. ——
mneman | ¢

O — |

54120/BL51

Figure A-21. <response message unit >

Message Communication and System Functions
A-22

<response
mnemon i ¢

54120/8L60

Where <response mnemonic > is defined as

A

<upper
cose aipha> 1
<upper ..J/\x A -
R o -
case alpho> v
<digit> —

-
s

54120/BL62

Where <uppercase alpha>> is defined as a single ASCII encoded byte in the
range 41 - 34 (65 - 90 decimal).

Where (_) represents an "underscore”, a single ASClI-encoded byte with the
value 5F (95 decimal).

Figure A-21. <response message unit> (Continued)

<response data>. The <response data> element represents the
various types of data which the instrument may return. These types
include: < character response data>, <nrl numeric response data >,
< nr3 numeric response data >, < string response data>, < defiite
length arbitrary block response data >, and < arbitrary ASCII response

data>.

<response
—_— . —
mRemon | ¢

54120/BL63

Figure A-22. < character response data>

Message Communication and System Functions
A-23

'y

<digit> i»

54120/8L64

Figure A-23. <nrl numeric response data >

|
A

<digit> . <digity

i

)

|
=® S <digit>

[’ |[\v,';

i
8 <non-dounl e :
— e

quote char> i

Y

54120/BL 66
Figure A-25. <string response data >

Message Communication and System Functions
A-24

~

A

—
4

e

|

< _ b
non—-yero — <digit> <B-bit

digit> o ‘ T doto byte>

Y

54120/BLET

Figure A-26. <definite length arbitrary block response data >

—

-l

5 E <ASCII
: ¢ato byte> NL @

54120/BL68

Where <ASCII data byte > represents any ASCll-encoded data byte except
<NL > (04, 10 decimal).

Notes:

1. The END message provides an unambiguous termination to an element
that contains arbitrary ASCII characters.

2. The IEEE 488.1 END message serves the dual function of terminating this
element as well as terminating the < RESPONSE MESSAGE >. It is only
sent once with the last byte of the indefinite biock data. The NL is present
for consistency with the < RESPONSE MESSAGE TERMINATOR >.

Indefinite block data format is not supported in the HP 165004.

Figure 4-27. < arbitrary ASCII response data >

Message Communication and System Functions
A-25

< response data separator >. A comma separates multipie pieces of
response data within a single < response message unit>.

S4120/BLE8

Figure A-28. <response data separator>

< response header separator>. A space (ASCII decimal 32) delimits the
response header, if returned, from the first or only piece of data.

©4120/BL7O

Figure A-29. <response header separator >

< response message unit separator>. A semicolon delimits the
< response message unit > s if multiple responses are returned.

S4120/8.71

Figure A-30. <response message unit separator>

< response message terminator >, A <response message terminator >
(NL) terminates a complete < response message >. It should be read
from the instrument along with the response itself.

Note

If you do not read the <response message terminator> the
HP 165004 wilt produce an interrupted error.

Message Communication and System Functions
A-26

Common
Commands

IEEE 488.2 defines a set of common commands. These commands

perform functions which are common to any type of instrument. They can

therefore be implemented in a standard way across a wide variety of

instrumentation. All the common commands of IEEE 488.2 begin with an
asterisk. There is one key difference between the IEEE 488.2 common
commands and the rest of the commands found in this instrument. The
IEEE 488.2 common commands do not affect the parser’s position within
the command tree. More information about the command tree and tree

traversal can be found in the Programming and Documentation

Conveations chapter.

Tabie A-3. HP 165004°s Common Commands

Command Command Name

*CLS Clear Status Command

*ESE Event Status Enable Command

*ESE? Event Status Enable Query

*ESR? Event Status Register Query

*IDN? Identification Query

*1ST? Individual Status Query

*OPC Operation Complete Command
*QPC? Operation Complete Query
*OPT? Option Identification Query

*PRE Paraliel Poll Enable Register Enable Command
*PRE? Parallel Poll Enable Register Enable Query
*RST Reset (not implemented on HP 16500A)
*SRE Service Request Enable Command

*SRE? Service Request Enable Query

*STB? Read Status Byte Query

*TRG Trigger Command

*TST? Self-Test Query

*WAI Wait-to-Continue Command

Message Communication and System Functions

A-27

Status Reporting B

Introduction

The status reporting features which are available over the bus inciude the
serial and parallel polls. IEEE 488.2 defines data structures, commands,
and common bit definitions for each. There are also instrument defined
structures and bits.

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if the
queue is not empty. For registers, the summary bit is set if any enabled bit
in the cvent register is set. The events are enabled via the corresponding
event enable register. Events captured by an event register remain set
until the register is read or cleared. Registers are read with their
associated commands. The "*CLS" command clears all event registers
and all queues except the output queuve. If "™CLS" is sent immed:ately
following a < program message terminator > , the output queue will also
be cleared.

Status Reporting
B-1

NOTE: THE INDIVIDUAL BIT ASSIGNMENTS FOR THE MODULE EVENT REGISTERS ARE MODULE SPECIFIC.

—Zm
2k 4

LOGICAL COR

INTERMODULE EVENT
REGISTER
(MESR®)>

ENABLE
REGISTER
(MESE®)

| LOGICAL OR

MCDULE EVENT REGISTER
FOR MODULE A
(MESR1

ENABLE
REGISTER
(MESE 1)

LAGICAL OR
L

MODULE EVENT REGISTER
FOR MODULE B
(MESR2)

ENABLE
REGISTER
(MESE2)

E
LOGICAL OR

MCDULE EVENT REGISTER
FOR MDDULE C
(MESR3?

UenaBLE

REGISTER
(MESE3:

T
| : i

| LOGICAL OR

| MODULE EVENT REGISTER

FOR MODULE C
{MESR4)

ENABLE
REGISTER
(MESE4D

Status Reporting

B-2

LOGICAL OR

MODULE TVENT REGISTER
FOR MDDULE E
(MESRS)

ENABLE
REGISTER
(MESES)

HFHH+
MIM[M]M]M] T COMBINED EVENT REGISTER
D|D|D|DID|N FOR ALL MODULES
5(4]|312 1T (CESR)
ENABLE
REGISTER
(CESE)
LOGICAL OR
Flulcle[p[alR] O} 3
olr|miX|D|Y|Q|P EgE?ETERS
NIDE|E|EE|C|C { «ESR)
NOTE: URQ AND RQC NOT IMPLEMENTED
i ENABLE
l REGISTERS
C»ESE S
LOGICAL OR
QUEUES:
: 0-OUTRUT
o E LCL READ BY LER?
| L
1
Yy %
o |RIE[M[L M STATUS
blels|alc Ig E“TEU
L IsiB|Vv]L B CeSTED
r T SERVICE
RERE ' REQEST
L_ ' L l ENASLT
REGISTER
[2ERE:

TESBO/HLE !

Figure B-1. Status Byte Structures and Concepts

Event Status Register

Service Request
Enable Register

Bit Definitions

The Event Status Register is a 488.2 defined register. The bits in this
register are "latched.” That is, once an event happens which sets a bit, that
bit will only be cleared if the register is read.

The Service Request Enable Register is an 8-bit register. Each bit enables
the corresponding bit in the status byte to cause a service request. The
sixth bit does not logically exist and is always returned as a zero. To read
and write to this register use the *SRE? and *SRE commands.

MAY - message available. Indicates whether there is a response in the
output queue,

ESB - event status bit. Indicates if any of the conditions in the Standard
Event Status Register are set and enabled.

MSS - master summary status. Indicates whether the device has a reason
for requesting service. This bit is returned for the *STB? query.

RQS - request service. Indicates if the device is requesting service. This
bit is returned during a serial poll. RQS will be set to 0 after being read
via a serial poll (MSS is not reset by *STB?).

PON - power on. Indicates power has been turned on.
URQ - vser request. Always 0 on the HP 16500A.
CME - command error. Indicates whether the parser detected an error.

Note

The error numbers and/or strings for CME, EXE, DDE, and
QYE can be read from a device defined queue {(which is not part
of 488.2) with the query :SYSTEM:FRROR?.

EXE - execution error. Indicates whether a parameter was out of range,
or inconsistent with current settings.

DDE - device specific error. Indicates whether the device was unable to
complete an operation for device dependent reasons.

Status Reporting
B-3

Key Features

Status Reporting
B-4

QYE - query error. Indicates whether the protocol for queries has been
violated.

RQC - request control. Always 0 on the HP 16500A.

OPC - operation complete. Indicates whether the device has completed
all pending operations. OPC is controlied by the *OPC common
command. Because this command can appear after any other command,
it serves as a general purpose operation complete message generator,

LCL - remote to local. Indicates whether a remote to local transition has
occurred.

MSB - module summary bit. Indicates that an enable event in one of the
modules Status registers has occurred.

A few of the most important features of Status Reporting are listed in the
following paragraphs,

Operation Complete. The IEEE 488.2 structure provides one technique
which can be used to find out if any operation is finished. The *OPC
command, when sent to the instrument after the operation of interest, will
set the OPC bit in the Standard Event Status Register. If the OPC bit and
the RQS bit have been enabled a service request will be generated. The
commands which affect the OPC bit are the overlapped commands.

QUTPUT XO0(**SRE 32 ; *ESE 1" lenables an OPC service request

Status Byte. The Status Byte contains the basic status information which
is sent over the bus in a serial poll. If the device is requesting service
(RQS set), and the controller serial polls the device, the RQS bit is
cleared. The MSS {(Master Summary Status) bit (read with *STB?) and
other bits of the Status Bvte are not be cleared by reading them. Only the
RQS bit 1s cleared when read. To see how the RQS and MSS bils are set
and used, see figure B-2.

The Status Byte is cleared with the *CLS common-command.

—— 5TATUS SUMMARY MESSAGES —

|
| ’j_' “ i l l " -4—— READ BY SERIAL POLL

SERVICE ROS
REQUEST T — 7 16 [eselmavi a[2] 1]e | STATUS BIT REGISTER
GENERATION MSS |
1 ‘ i ~4— READ BY ~5TE?
é
i
[— &
¥
- &

LOGICAL OR
Lt
(e -

-

()

i
=@>=

SERVICE REQUEST

‘ ENABLE REGISTER

*S5RE <NRf>
»SRE?

1656@/BL24

Figure B-2. Service Request Enabling

Status Reporting
B-5

Serial Poll

Using Serial Poll
(HP-1B)

Status Reporting
B-6

The HP 16500A supports the IEEE 488.1 serial poll featurc. When a
serial poll of the instrument is requested, the RQS bit is returned on bit 6
of the status byte.

This example will show how to use the service request by conducting a
serial poll of all instrumeats on the HP-IB bus. In this example, assume
that there are two instruments on the bus; a Logic Analysis System at
address 7 and a printer at address 1.

The program command for serial poll using HP BASIC 4.0is Stat =
SPOLL(707). The address 707 is the address of the Logic Analysis
System in the this example. The command for checking the printer is Stat
= SPOLL(701) because the address of that instrument is 01 on bus
address 7. This command reads the contents of the HP-IB Status Byte
Register into the variable called Stat. At that time bit 6 (RQS bit) of the
variable Stat can be tested to see if it is set (bit 6 = 1).

The serial poll operation can be conducted in the following manner:

1. Enable intcrrﬁpts on the bus. This allows the controller to "see”
the SRQ line.

2. Disable interrupts on the bus.

3. If the SRQ line is high (some instrument is requesting service)
then check the instrument at address 1 to see if bit 6 of its status
register is high.

4. To check whether bit 6 of an instruments status register is high,
use the following Basic statement:

IF BIT {Stat, 6) THEN

5. If bit 6 of the instrument at address 1 is not high, then check the
instrument at address 7 to see if bit 6 of its status register is high.

6. As soon as the instrument with status bit 6 high is found check the
rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to bappen on the bus than
simply reading the register. This command clears the bus automatically,
addresses the talker and listener, sends SPE (serial poll enable) and SPD
(serial poll disable) bus commands, and reads the data. For more
information about serial poll, refer to your controlier manual, and

programming language reference manuals.

After the serial poll is completed, the RQS bit in the HP 16500A Status
Byte Register will be reset if it was set. Once a bit in the Status Byte
Register is set, it will remain set until the status is cleared with a *CLS
command, or the instrument is reset.

Status Reporting
B-7

Parallel Poll

Status Reporting
B-8

Parallel poll is a controller initiated operation which is used to obtain
information from several devices simultaneously. When a controller
initiates a Parallel Poll, each device returns a Status Bit via one of the DIO
data lines. Device DIO assignments are made by the controller using the
PPC (Parallel Poll Configure) scquence. Devices respond either
individually, each on a separate DIO line; collectively on a single DIO
line; or any combination of these two ways. When responding collectively,
the result is a logical AND (True High) or logical OR (True Low) of the
groups of status bits.

Figure B-3 shows the Paralle] Poll Data Structure. The summary bit is
sent in response to a Paraliel Poll. This summary bit is the ist” (individual
status) local message.

The Parallel Poll Enable Register determines which events are
summarized in the ist. The *PRE command is used to write to the enable
register and the *PRE? query is used to read the register. The *IST?
query can be used to read the "ist" without doing a parallel poll.

DEVICE DEFINED CONDITIONS SUMMARY MESSAGE

Y iyt b eyt dr¥beday

b ione s [isTra] 3 12] 1] e]ofa] [7 [ussjese]mavfic] 2 [1 Juss STR"‘ET%I:SB-EE‘;E
T - ?
P
4
{2
[
- N
- A
e Y
-t e
TN
- —&
i

O &
& T X
= &
: ® 1
: L r
- X

- ¢

. L9,

f
74
- (o ’
i A&
¥
e,

B A@

T 1 L .
ol NI Te] el T
STATUS «PRE?
L I5T?
16500 /BL 26

Figure B-3. Parallel Polf Data Structure

Status Reporting
B-9

Poliing HP-IB Devices

Configuring Parallel
Poll Responses

Example:

Example:

Status Reporting
B-10

Parallel Poll is the fastest means of gathering device status when several
devices are connected to the bus. Each device (with this capability) can
be programmed to respond with one bit of status when parallel polled.
This makes it possible to obtain the status of several devices in one
operation. If a device responds affirmatively to a parallel poll, more
information about its specific status can be obtained by conducting a serial
poll of the device.

Certain devices, including the HP 16500A, can be remotely programmed
by a controller to respond to a parallel poll. A device which is currently
configured for a parallel poll responds to the poll by placing its current
status on one of the bus data lines. The response and the data-bit number
can then be programmed by the PPC (parallel Poll Configure) statement.
No muitiple listeners can be specified in this statement. If more than one
device is to respond on a single bit, each device must be configured with a
separate PPC statement.

ASSIGN @Device TO 707
PPOLL CONFIGURE @Device;Mask

The value of Mask (any numeric expression can be specified) is first
rounded and then used to configure the device’s parallel response. The
least significant 3 bits (bits 0 through 2) of the expression arc used to
determine which data line the device is to respond on (place its status on).
Bit 3 specifies the "true” state of the parallel poll response bit of the
device. A value of 0 implies that the device’s response is 0 when its status
bit message is true.

The following statement configures the device at address 07 on the
interface select code 7 to respond by placing a 0 on bit 4 when its status

response s "true."
P

PPOLL CONFIGURE 707;4

Conducting a Parallel
Poll

Example:

Disabling Paraliel Poll
Responses

Examples:

The PPOLL (Parallel Poll) function returns a single byte containing up to
8 status bit messages for all devices on the bus capabie of responding to
the poll. Each bit returncd by the function corresponds to the status bit of
the device(s) configured to respond to the parallel poll (one or more
devices can respond on a single line). The PPOLL fuaction can only be
executed by the controller. It is initiated by the simultaneous assertion of
ATN and EOL.

Respcnse = PPOLL{7)

The PPU (Paraliel Poll Unconfigure) statement gives the controller the
capability of disabling the parallel poll responses of one or more devices
on the bus.

The following statement disables device 5 only:

PPOLL UNCONFIGURE 705

This statement disables all devices on interface select code 8 from
responding to a paraliel poll:

PPOLL UNCONFIGURE 8

If no primary address is specified, all bus devices are disabled from
responding to a parallel poll. If a primary address is specified, only the
specified devices (which have the parallel poll configure capability) are
disabled.

Status Reporting
B-11

HP-IB Commands The following paragraphs describe actual HP-IB commands which can be

used to perform the functions of the Basic commands shown in the
previous examples,

Parallel Poll Unconfigure Command. The paralle] poll unconfigure
command (PPU) resets all parallel poll devices to the idle state (unable to
respond to a parallel poll).

Parallel Poll Configure Command. The parallel poll configure command
(PPC) causes the addressed listener to be configured according to the
parallel poll enable secondary command PPE.

Parallel Poll Enable Command. The parallel poll enable secondary
command (PPE) configures the devices which have received the PPC
command to respond to a paraliel poll on a particular HP-IB DIO line
with a particular level.

Parallel Poll Disable Command. The parallel poll disable secondary
command (PPD) disables the devices which have received the PPC
command from responding to the parallel poll.

Table B-1. Parallel Poll Commands

Command Mnemonic Decimal ASCIIISO
Code Character

Paraliel Poll Unconfigure PPU 21 NAK
{Multiline Command)
Parallel Poll Configure PPC 05 ENQ
{Addressed Command)
Parallel Poll Enable PPE 96-111 I-O
(Secondary Command)
Parallel Poll Disable PPD 112 P
(Secondary Command)

Status Reporting
B-12

Device Dependent
Errors

Error Messages

This section covers the error messages that relate to the HP 16500A
mainframe and modules.

200

201

202

203

Label not found
Pattern string invalid
Qualifier invalid
Data not availabie

RS-232C error

Error Messages
C-1

Command Errors

Error Messages
C-2

-100 Command error (unknown command)(generic error)
-101 Invalid character received

-110 Command header error

-111 Header delimiter error

-120 Numeric argument error

-121 Wrong data type (numeric expected)

-123 Numeric overflow

-129 Missing numeric argument

-130 Non numeric argument error (character,string, or block)
-131 Wrong data type (character expected)

-132 Wrong data type (string expected)

-133 Wrong data type {block type #D required)

-134 Data overflow (string or block too long)

-139 Missing non numeric argument

-142 Too many arguments

-143 Argument delimiter error

-144 Invalid message unit delimiter

Execution Errors -200 No Can Do (generic execution error)
-201 Not executable in Local Mode
-202 Settings lost due to return-to-local or power on
-203 Trigger ignored
-211 Legal command, but settings conflict
-212 Argument out of range
-221 Busy doing something else
-222 Insufficient capability or configuration
-232 Output buffer full or overflow
-240 Mass Memory error (generic)
-241 Mass storage device not present
-242 No media
-243 Bad media
-244 Media full
-245 Directory full
-246 File name not found
-247 Duplicate file name

-248 Media protected

Error Messages
C3

Internal Errors

Error Messages
C4

-300 Device Failure (generic hardware error)
-301 Interrupt fault

-302 System Error

-303 Time out

-310 RAM error

-311 RAM failure (hardware error)

-312 RAM data loss (software error)

-313 Calibration data loss

-320 ROM error

-321 ROM checksum

-322 Hardware and Firmware incompatible
-330 Power on test failed

-340 Self Test failed

-350 Too Many Errors {Error queune overflow)

Query Errors -400 Query Error (genenic)
-410 Query INTERRUPTED
-420 Query UNTERMINATED
-421 Query received. Indefinite block response in progress
-422 Addressed to Talk, Nothing to Say

-430 Query DEADLOCKED

Error Messages

C-5

*CLS command, 5-4
*ESE command, 5-5
*ESR command, 5-7
*IDN command, 5-9
*IST command, 5-10
*OPC command, 5-12
*OPT command, 5-13
*PRE command, 5-14
*RST command, 5-16
*SRE command, 5-17
*STB command, 5-19
*TRG command, 5-21
*TST command, 5-22
*WAI command, 5-24
32767, 4-6

99E+37, 4-6

=, 4.7

A

Addressed talk/listen mode,
Addressing the instrument
HFP-IB, 1-4
RS 232C, 1-4
Angular brackets, 1-3,4-7
AUToload command, 8-4

22

Index

Baud rate, 3-6
BEEPer command, 6-3
Binary, 1-10

Bit definitions, B-3
Braces, 4-7

C

Cable

RS-232C, 3-2
CAPability command, 6-4
Card identification numbers, 6-5
CARDcage command, 6-5
CARDcage query, 1-15
CATalog command, 8-5
CESE command, 6-7
CESR command, 6-9
Character data, 1-10, 1-18
Character program data, 1-10,1-18
Clear To Send (CTS), 3-5
CME, B-3
Command, 1-5,1-17

*CLS, 35-4

*ESE, 5-5

*OQOPC, 5-12

*PRE, 5-14

*RST, 5-16

*SRE, 5-17

Index-1

*TRG, 5-21

*WAIL 5-24

AUToload, 84

BEEPer, 6-3

CESE, 6-7

COPY, 8&-7

DATA, 7-3

DELete, 9-3

DOWNIoad, 8-9

DSP, 76

EQI 6-11

HEADer, 1-17,7-9

INITialize, 8-11

INPort, 9-5

INSert, 9-6

LOAD:CONFig, 8-12

LOAD:IASSembler, 8-13

Lockout, 3-9,6-13

LONGform, 1-17,7-10

MENU, 6-14

MESE, 6-16

MSI, 8-14

PACK, B8-15

PRINt, 7-11

PURGe, 2-16

REName, 8-17

RMODe, 6-20

SELect, 1-13,6-21

SETColor, 6-23

SETup, 7-13

SKEW, 9-7

STARt, 6-25

STOP, 6-26

STORe:CONFig, &-18

TREE, 9-8
Command cross-reference, 4-12
Command errors, C-2
Command header, 1-5
Command mode, 2-1
Command set organization, 4-11
Command structure, 1-14, 4-8
Command tree, 4-2-4-3

Index-2

Select, 1-13,6-22
Command types, 4-2
Common command header, 1-7
Common commands, A-27,4-2, 4-8, 5-1
Compound command header, 1-6
Compound header, 44
Configuration file, 1-12,1-15
Controller mode, 2-2

RS-232C, 36
Controflers, 1-2
COPY command, 8§8-7

D

Data bits, 3-6-3.7
7-Bit mode, 3-7
8-Bit mode, 3-7
Data Carrier Detect (DCD), 3-5
DATA command, 7-3
Data Communications Equipment, 3-2
Data mode, 2-1
Data Set Ready (DSR), 3-5
Data Terminal Equipment, 3-2
Data Terminal Ready (DTR), 3-4
DCE, 3-2
DCL, 25
DDE, B-3
Decimal, 1-10
Definite-length block response data, 1-20
Definitions, 4-7
DElLete command, 9-3
Device address
HP-IB, 1-4,2-3
RS-232C, 1-4 3-8
Device clear, 2-5
Device dependent errors, C-1
DOWNIload command, 8-9
DSP command, 7-6
DTE, 3-2

E
Ellipsis, 4-7
Enter statement, 1-2
EOI, 1-10

EOI} command, 6-11
ERRor command, 7-7
Error messages, C-1
ESB, B-3

Event Status Register, B-3
EXE, B-3

Execution errors, C-3
Extended interface, 3-4

F

File types, 8-10

G

GET, 2-5
Group execute trigger, 2-5

H

HEADer command, 1-17,7-9
Hexadecimal, 1-10

HP-IB, A-1,1-4,2-1-2-2 B-6
HP-IB address, 2-2

HP-IB commands, B-12
HP-IB device address, 2-3
HP-IB interface, 2-2

HP-IB interface code, 2-3

HP-IB interface functions, 2-1
HTIMe query, 9-4

IEEE 488.1, A-1,2-1,3-1
IEEE 488.1 bus commands, 2-5
IEEE 4882, A-1,3-1
IFC, 2-5
Infinity, 4-6
Initialization, 1-12
INITialize command, 8-11
INPort command, 9-5
Input buffer, A-2
INSert command, 9-6
Instrument address, 2-3
HFP-IB, 1-4
Interface capabilities, 2-1
RS-232C, 3-6
Interface clear, 2-5
Interface code
HP-IB, 2-3
Interface select code, 1-4
HP-IB, 14
RS-232C, 3-8
INTermodule subsystem, 9-1
Internal errors, C-4
Internal0, 4-8
Internall, 4-8

L
LCL, B-4
LER command, 6-12
Linefeed, 4-8

Listening syntax, A-8
LOAD:CONFig command, 8-12
LOAD:IASSembler command, §-13

Index-3

Local, 2-4
Local lockout, 2-4
Lockout command, 3-9,6-13 o
Longform, 1-9

LONGform command, 1-17,7-10

Lowercase, 1-9 Octal, 1-10

OPC, B4

Operation Complete, B-4
M OR notation, 4-7

OUTPUT command, 1-3

Output queue, A-2

Mainframe commands, 4-2, 4-9, 6-1 Qutput statement, 1-2

Mass storage unit specifier, 4-8 Overlapped command, 3-12, 5-24, 6-25 - 6-26
MAV, B-3 Overlapped commands, 4-6

MENU command, 6-14

MESE command, 6-16 p

MESR command, 6-18
Message terminator, 1-3

MMEMory subsystem, 8-1 PACK co 4 815

MSB, B4
MSI command, §-14 Parallel poll, B-8
Parallel poll commands, B-12
MSS, B-3 .
Panty, 3-6
msus, 4-8,8-1
; Parse tree, A-7
Multiple data parameters, 1-9
. . . Parser, A-2
Maultiple numeric variables, 1-21
. FON, B-3
Multiple program commands, 1-11
. . PPC, B-12
Multiple queries, 1-21
Multiple subsystems, 1-11 PPD, B-12
’ PPE, B-12
PPU, B-12
N PRINt command, 7-11
Printer, 4-9
Printer mode, 2-2
NL, 1-10,4-8 RS-232C, 36
Notation conventions, 4-7 Program command, 1-5
Numeric base, 1-10, 1-18 Program data, 1-9, A-14
Numeric data, 1-10 Program examples, 4-9
Numeric program data, 1-10 Program message, 1-5, A-9
Numeric variables, 1-20 Program message syntax, 1-5

Program message terminator, 1-10
Program message unit, 1-5
Program query, 1-5

Index-4

Program syntax, 1-5
Programming examples, 1-1
Protocol, A-3,3-6
None, 3-6
XON/XOFF, 3-7
Protocol exceptions, A-4
Protocols, A-2
PURGe command, 8-16

Q

Query, 1-5,1-8,1-17
*ESE, 3-5
*ESR, 5-7
*IDN, 5-9
*IST, 5-10
*OPC, 5-12
*OPT, 5-13
*PRE, 5-14
*SRE, 5-17
*STB, 5-19
*TST, 5-22
AUToload, 8-4
BEEPer, 6-3
CAPability, 64
CARDcage, 1-15,6-5
CATalog, 8-5
CESE, 6-7
CESR, 6-9
DATA, 7-3
EOI, 6-11
ERRor, 7-7
FTIMe, 9-4
HEADer, 79
INPort, 9-3
LER, 6-12
LOCKout, 6-13
LONGform, 7-10
MENU, 6-15
MESE, 6-16

MESR, 6-18
MSI, 8-14
PRINt, 7-11
RMOQODe, 6-20
SELect, 6-21
SETColor, 6-24
SETup, 7-13
SKEW, 9-7
TREE, 9-8
TTIMe, 9-10
UPLoad, B8-19
Query command, 1-8
Query errors, C-5
Query response, 1-16
Query responses, 4-6
Question mark, 1-8
QYE, B-4

R

Receive Data (RD), 3-3-3-4
Remote, 2-4

Remote enable, 2-4

REN, 2-4

REName command, 8-17
Request To Send (RTS), 3-5
Response data, 1-20
Response message, A-21
RMODe command, 6-20
Root, 4-2,4-4,4-9

RQC, B-4

ROS, B-3

RS-232C, A-1,1-4,3-1,3-8

S

SDC, 2-5
SELect command, 1-13,6-21

Index-5

Select command tree, 1-13,6-22
Selected device clear, 2-5
Selecting a module, 1-13
Separator, 1-5, A-18
Sequential commands, 4-6
Serial poll, B-6
Service Request Enable Register, B-3
SETColor command, 6-23
SETup command, 7-13
Shortform, 1-9
Simple command header, 1-5
SKEW command, 9-7
sp, 48
Sguare brackets, 4-7
STARt command, 6-25
Status, 1-21,B-1,5-2
Status byte, B-4
Status registers, 1-21
Status reporting, B-1
Stop bits, 3-6
STOP command, 6-26
STORe:CONFig command, 8-18
String variables, 1-19
Subsystem
INTermodule, 9-1
MMEMory, 81
S5YSTem, 7-1
Subsystem commands, 4-3,4-9
Suffix multiplier, A-16
Suffix units, A-16
Syntax, A-8
Syntax diagram
Common commands, 5-3
INTermodule subsystem, 9-1-9-2
Mainframe commands, 6-1-6-2
MMEMory subsystem, 8-1-8-3
SY5Tem subsystem, 7-1-7-2
Syntax diagrams, 4-8
IEEE 4882, A-5
SYSTem subsystem, 7-1

Index-6

T

Talk only mode, 2-2

Talking syntax, A-21

Talking to the instrument, 1-2
Terminator, 1-3,1-10, A-26
Three-wire Interface, 3-3
Trailing dots, 4-7

Transmit Data (TD), 3-3-34
TREE command, 9-8

Tree traversal rules, 4-4
Truncation rule, 4-1

TTIMe query, 9-10

U

UPLoad command, 8-19
Uppercase, 1-9
URQ, B3

w

White space, 4-8

X

XXX, 1-12,1-14,1-19, 4-4, 4-7

